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1. INTRODUCTION 

These course have been written for the students in the 4th year ( 1st year of 2nd stage) 

on the faculty of mechanical engineering, specialization Computer  Mechanics I.  In general, 

the text may be used for all students studying the theory of vibrations. 

Numerical analysis has been studied since before the time of Newton. These studies 

were concerned with numerical procedures for approximating solutions to problems that could 

not be conveniently solved by theoretical methods leading to analytical solutions expressed by 

formulas. Until the arrival of high-speed computing machines, such methods were difficult to 

use, and their full potential could not be realized. 

With the arrival of modern computing machines the whole character of numerical 

analysis has changed. Iterative methods can now be used with much greater ease and 

effectiveness. Very large linear systems can be studied numerically. Numerical solutions of 

differential equations can be obtained using very small step size, or even variable step size, 

with thousands of steps. Today, the elaboration of efficient computational models for the 

analysis of the dynamic behaviour of machines and structures has became a routine task. 

Computer can be used to automate many engineering applications. When they are used 

effectively they produce results that demonstrate an increase in productivity and a reduction in 

numerical errors. Many professional software are used, like ANSYS, NASTRAN, SYSNOIS, 

RAYNOLDS, MAPLE, MATLAB, etc., to solve the analysis of stresses and dynamic loading 

in frames and machines parts. 

In every technical solution we have to observe following elements of solution:  

Statement of problem 

Determine the effective theoretical approach 

Mathematical description of the model  

Algorithm development 

Input/output design 

Choose numerical methods 

Computer implementation 

Program development 

Program testing 

We see that the computer implementation is one of all necessary steps only.   Therefore in 

each type of problem we will review the theoretical ideas connected with such problem.  
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2. ANALYTICAL DYNAMICS OF DISCRETE SYSTEMS 

 

 Analytical dynamics is based on principle of virtual work, which is transferred to the 

concepts to the energy and work. Because these quantities are scalars is such approach to 

calculus called Scalar Dynamics in opposite to the vector dynamics. This method provides a 

very powerful tool for two main reasons: 

• It considerably simplifies the analytical formulation of the motion equations 

for a complex mechanical system 

• It gives rise to approximate numerical methods for the solution for both 

discrete and continuous systems in the most natural manner 

 

2.1 Principle of virtual work for a particle 

 
 Let us consider a particle of mass mi, submitted to a force field X of components Xi. 

The dynamic equilibrium of the particle can be expressed in d’Alembert’s form 

                                 0 1, 2,3i imu X i− = =&&                                                         (2.1.1) 

where ui represents the displacement of the particle. 

Let us consider that the particle follows during the 

time interval [t1,t2] a motion trajectory iu∗  distinct 

from the real one iu  (fig. 2.1). This allows us to 

define the virtual displacement of the particle the 

relationship 

                           1 2; ( ) ( ) 0i i i i iu u u u t u tδ δ δ∗= − = =                                                       (2.1.2) 

The virtual displacement may be arbitrary in the time interval (t1, t2). We suppose only, that 

on the beginning and end of the interval is the displacement equal for both paths. Therefore 

1 2( ) ( ) 0i iu t u tδ δ= = . From (2.1.2) it is seen, that the change operator δ is connected with the 

time derivative operator: 

                             ( ) ( )i i i i i i
d du u u u u u
dt dt

δ δ∗ ∗= − = − =& & &                                            (2.1.3) 

t2

t

δui 

( )iu t∗

ui(t) 

Obr.2.1 
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If we multiply. (2.1.1) by the associated virtual displacement and sum over the components, 

we get 

                                     
3

1
( ) 0i i i

i
mu X uδ

=

− =∑ &&                                                             (2.1.4) 

which shows that 

If we consider N particles in a system the eq.(2.1.1) will be changed to 

                          0 1, 2,3; 1,...k ik ikm u X for i k N− = = =&&                                       (2.1.5) 

 the virtual work principle for the system of particles takes the form 

                         
3

1 1
( ) 0

N

k ik ik ik
k i

m u X uδ
= =

− =∑∑ && ,                                       (2.1.6) 

and it can be stated that 

If the virtual work equation is satisfied for any virtual displacement compatible with the 

kinematical constraints, the system is in dynamic equilibrium. 

 

2.2 The  kinematical constraints 

 

Without kinematical constraints, the state of the system would be completely defined  by the  

3N displacements components uik. They represent the instantaneous configuration. Starting 

from the reference configuration xik . It is possible determine the instantaneous configuration 

from the equation 

                                                     ( ) ( , )ik ik ikt x u x tξ = +                                               (2.2.1) 

The system is said to possess 3N degrees of freedom. 

In however, the particles are submitted to kinematic constraints which restrain their motion 

and define dependency relationship between particles. The constraints are divided on: 

a) Holonomic constraints, which are defined by relationships of type 

                                                     ( , ) 0ikf tξ =                                                       (2.2.2) 

     Every holonomic constraint reduces by one the number of degrees of freedom  

                                                       of  the system 

The virtual work produced by the effective forces acting on the particle during a virtual 

displacement iuδ is equal to zero. 
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If there is not explicit dependence with respect to time, the constraints are said to be 

scleronomic. Otherwise they are called rheonomic. 

b) Non-holonomic constraints are such, if they ar not put in the form (2.2.2). In 

particular, non-holonomic constraints often take the form of differential relationship  

                                      ( , ) 0ik ikf tξ ξ =&                                                                   (2.2.3) 

      These equations are generally not integrable .  

 

2.3. Generalized coordinates and displacements 

 

If  s holonomic constraints exist between the 3N displacements of the system, the number 

of degrees of freedom is then reduced to 3N – s. It is then necessary to define 3n N s= −  

configuration parameters, or generalized coordinates, noted 1( , , )nq qK  in terms of which 

the displacements of the system of particles are expressed in the form 

                              1 2( , ) ( , , , , )ik ik nu x t U q q q t= K                                                     (2.3.1) 

When only holonomic constraints are applied to the system, the generalized coordinates 

are independent and may be varied in any arbitrary manner without violating the 

kinematic constraints. The virtual displacement compatible with the holonomic constraints 

may be expressed in the form 

                                 1

1

n
k

ik s
s s

Uu q
q

δ δ
=

∂
=

∂∑                                                                  (2.3.2) 

The virtual work equation becomes 

                               
                           

 

                                ( )
3

1 1 1

n N
ik

k ik ik s
s k i s

Um u X q
q

δ
= = =

 ∂
− ∂ 

∑ ∑∑ &&                                            (2.3.3) 

and putting the second term in the form 

                                 

                                                     
1

n

s s
s

Q qδ
=

∑  

Qs is called the generalized force 

The generalized force conjugated to the degree of freedom appears as 

                                          
3

´́ 1 1

N
ik

s ik
k i s

UQ X
q=

∂
=

∂∑∑                                                              (2.3.4) 
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The first term in (2.3.3) has the meaning of generalized inertia force 

 

2.4. Hamilton´s principle for conservative systems 

 

Hamilton´s principle is a time integrated form of the virtual work principle obtained by 

transforming the expression 

                                ( )
2

1

3

1 1
0

t N

k ik ik ik
k it

m u X u dtδ
= =

 
− + =  

∑∑∫ &&                                              (2.4.1) 

where ikuδ  are arbitrary bur compatible virtual displacements which verify the end conditions 

(2.1.2). 

First, let us assume that the applied forces ikX  can be derived from the potential energy, so 

that virtual work can be expressed in the form 

                                  
3

1 1 1

N n

ik ik s s p
k i s

X u Q q Eδ δ δ
= = =

= = −∑∑ ∑                                               (2.4.2) 

The generalized forces are derived from the potential energy by the relationship 

                                               p
s

s

E
Q

q
∂

= −
∂

                                                                    (2.4.3) 

The term associated with inertia forces is transformed by noting that 

            1( ) ( )
2k ik ik k ik ik k ik ik k ik ik k ik ik

d m u u m u u m u u m u u m u u
dt

δ δ δ δ= + = +& && & & && & &  

Owing to the definition of the kinetic energy of the system 

                                       
3

1 1

1
2

N

k k ik ik
k i

E m u u
= =

= ∑∑ & &                                                             (2.4.4) 

the equation (2.4.1) may be written in the form 

                        
2 2

1 1

3

1 1
( ) 0

t tN

k ik ik k p
k i t t

m u u E E dtδ δ
= =

 
− + − =  
∑∑ ∫&                                            (2.4.5) 

in which the time boundary condition can be eliminated by taking account of the end 

conditions (2.1.2). 

The functional in (2.4.5) can be expressed in terms of generalized coordinates qs noticing that 

                                         
1

n
ik ik

ik s
s s

U Uu q
t q=

∂ ∂
= +

∂ ∂∑& &                                                       (2.4.6) 

and therefore  

                                ( , , ) ( , )k k p pE E q q t E E q t= =&                                                  (2.4.7) 
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Using the equations (2.1.2) and (2.3.2) the boundary condition may be also be written 

       1 2( ) ( ) 0s sq t q tδ δ= =                                                             (2.4.8)   

Hamilton´s principle for conservative system may thus be stated in the following form 

      The real trajectory of the system is such as the integral  

                                                     
2

1

( )
t

k p
t

E E dt−∫                   

remains stationary with respect to any compatible virtual displacement arbitrary between 

both instants t1 and t2 but vanishing at the ends of the interval. 

 

                      
2

1

( ) 0
t

k p
t

E Eδ − =∫ ;       1 2( ) ( ) 0s sq t q tδ δ= =                                         (2.4.9) 

 
2.5 Lagrange´s equations of 2nd order  

 

Starting from expression (2.4.9) the system of equations of motion are easily obtained in 

terms of generalized coordinates. We can write 

                                  
1

n
k k

k s s
s s s

E EE q q
q q

δ δ δ
=

 ∂ ∂
= + ∂ ∂ 

∑ &
&

 

 

Using more explicit form of (2.4.9)  

 

                            
2

1 1
0

t n
k k

s s s
s s st

E EQ q q dt
q q

δ δ
=

  ∂ ∂
+ + =  ∂ ∂  

∑∫ &
&

 

 

The second term can be integrate by parts  

 

                            
22 2

1 11

tt t
k k k

s s s
s s st tt

E E Edq dt q q dt
q q dt q

δ δ δ
   ∂ ∂ ∂

= −   ∂ ∂ ∂   
∫ ∫&

& & &
 

 

Taking into account the boundary conditions the following is equivalent to Hamilton´s 

principle 
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2

1 1

t n
k k

s s
s s st

E Ed Q q dt
dt q q

δ
=

  ∂ ∂
− + +  ∂ ∂  

∑∫ &
                                                (2.5.1) 

 

The variation sqδ  is arbitrary on the whole interval and the equations of motion result in the 

form obtained by Lagrange 

 

                              1, 2, ,k k
s

s s

E Ed Q s n
dt q q

 ∂ ∂
− = = ∂ ∂ 

K
&

                                      (2.5.2) 

  

 

2.5.1 Classification of generalized forces 

 

A distinction can be made between internal and external forces. In both cases they are said to 

be conservative if the associated virtual work is recoverable. 

 

Internal forces  

 

Among the internal forces, the distinction can be made between the linking forces, those 

associated with elastic deformations and those resulting from a dissipation mechanism. 

 

a. Linking forces 
 

Linking forces appear in a rigid connection between two particles. They are such as the 

system of forces is in equilibrium 

                                                       1 2 0i iX X+ =  

The virtual work associated with the virtual displacement is 

 

( ) ( )
3 3

1 1 2 2 1 1 2
1 1

0i i i i i i i
i i

A X u X u X u uδ δ δ δ δ
= =

= + = − =∑ ∑  

since the non-zero relative virtual displacement are not compatible with the constraints. Hence 

it can be deduced that the linking forces do not contribute to the generalized forces acing on 

the global system. 
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Their absence from the evaluation of the generalized forces is one of the attractive aspects of 

Lagrangien mechanics. 

 

b. Elastic forces 

 

An elastic body can be defined as a body for which any produced work is stored in a 

recoverable form, thus giving rise to a variation of internal energy 

                                    
3

int
1 1 1

N n
p

p ik s s
i k sik

E
E u Q q

u
δ δ δ

= = =

∂
= = −

∂∑∑ ∑  

with the generalized forces of elastic origin 

                                                    intp
s

s

E
Q

q
∂

= −
∂

                                                               (2.5.3) 

 

c. Dissipative forces 

 

The dissipative force may be characterised by the fact that it remain parallel and in opposite 

direction to the velocity vector and is a function of its modulus. Therefore a dissipative force 

acting of a mass particle k may bi expressed in the form 

                                                 ( ) k
k k k k

k

C f v
v

= −
vX  

or in terms of components 

                                               ( ) ik
ik ik k k

k

vX C f v
v

= −                                                          (2.5.4) 

where  is 

  Ck is a constant 

  fk(vk) is the function expressing velocity dependence  

  vk  is the absolute velocity of particle k: 

                                
3 3

2 2

1 1
k k ik ik

i i

v v u
= =

= = =∑ ∑v &   

The virtual work of the dissipative forces acting on the system is 

     Q q X u X
u
q

qs s ik ik ik
ik

s
s

s

n

k

N

ik

N

is

n

δ δ
∂
∂

δ= =
===−==

∑∑∑∑∑∑
111

3

11

3

1

 

From here  
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                   Q C f v
v
v

u
qs k k k

ik

k

ik

sk

N

i

= −
=−

∑∑ ( )
∂
∂11

3

                                                           (2.5.5) 

By noticing that 

                              v
du
dt

u
t

u
q

qik
ik ik ik

r
r

r

n

= = + ⋅

=
∑∂

∂
∂
∂

δ
1

   

                                       ik ik

s s

v u
q q

∂ ∂
=

∂ ∂&
 

it is possible to write 

    
Q C f v v

v
v
q

C f v
q

v

C f v v
q

s k k k
ik

k

ik

s
k k k

s
ik

ik

N

k

N

i

k k k
k

sk

N

= − = −








 =

= −

⋅ ⋅
====

⋅
=

∑∑∑∑

∑

( ) ( )

( )

∂
∂

∂
∂

∂
∂

1
2

2

1

3

111

3

1

                        (2.5.6) 

Let us introduce the dissipative function D as 

                                    D C f v dvk k

v

k

N k

= ∫∑
=

( )
01

                                                         (2.5.7) 

and thus  

                                     Q D
qs

s

= − ⋅

∂
∂

                                                                       (2.5.8) 

By assuming that the dissipative function D is homogeneous of order h in the generalized 

velocities on gets 

                                 ( )k p
d E E hD
dt

+ = −  

The order h of the dissipation function is 

 

h = 1    dry friction 

h = 2    viscous damping  

h = 3    aerodynamic drag 

 

 

External conservative forces  

 

When the external forces are conservative, their virtual work remain zero during a cycle 
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                                   0s sA Q qδ δ= =∫�  

and a potential energy is possible to use for definition of generalized force 

                                     pext

s

E
Q

q
∂

= −
∂

                                                                   (2.5.9) 

 

External non-conservative forces 

 

If the external forces are of the non-conservative type, the generalized force is 

                                 
3

1 1

N
ik

s ik
i k s

uQ X
q= =

∂
∂∑∑                                                                 (2.5.10) 

 

Lagrange equation of motion in the general case of non-conservative systems with 

rheonomic constraints may be explicitly expressed in the form 

 

                  ( ) ( ) 1, 2,...,pk k
s

s s s s

EE Ed D Q t s n
dt q q q q

∂∂ ∂ ∂
− + + = =

∂ ∂ ∂ ∂& &
                          (2.5.11) 
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3. VIBRATIONS 
 

We owe to Lord Rayleigh the formulation of the principles relative to theory of 

vibration such as they are applied and taught nowadays. In his remarkable treatise entitled 

Theory of sound and published in 1887 he introduced concept of oscillations of a linear 

system and showed the existence of natural modes and natural frequencies for discrete as well 

as continuous systems. His work remains valuable in many ways even though he was 

concerned with acoustics rather than with structural mechanics. 

Vibration is in general a motion periodic in time and is used to describe oscillation in 

mechanical systems. In most cases, the general purpose is to prevent or attenuate the 

vibrations, because of their detrimental effects, such as fatigue failure of components and 

generation of noise. However, there are some applications where vibrations are desirable and 

are usefully employed, as in vibration conveyers, vibrating sieves, etc. 

Because of their constant aim to minimize the stress in structures, the designers were 

the first who needed to get vibration and structural dynamic under control. During the next 

years, they had to limit the scope of their analysis and apply methods that could be handled by 

the available computational means. 

 Vibrations may be classified into three categories: 

• Free vibrations can occur only in conservative systems where there is no 

friction, damping and exciting force. Here, the total mechanical energy, which 

is due to the initial conditions, is conserved and exchange can take place 

between the kinetic and potential energies. 

• External forces that excite the system cause forced vibrations. The exciting 

forces supplies energy continuously to compensate for that dissipated by 

damping. 

• Self-excited vibrations are periodic oscillations of the limit cycle type and are 

caused by some nonlinear phenomenon. The energy required to maintain the 

vibrations is obtained from a non-alternating power source. In this case, the 

vibrations themselves create the periodic force. 
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Q(t)

3.1 Single-degree-of-freedom systems 
 

                                         

                                                                                            Let we consider the model shown          

                                                                                            in fig.3.1. Displacement q 

                                                                                             is measured from the stable 

                                                                                             equilibrium position of the   system,               

                                                                                             the velocity q. , the acceleration q..  

                                   Fig.  3.1                                             is measured positive in the                   

positive direction  of displacement. The equation of motion is:   

                                    ( )mq bq kq Q t+ + =&& &           (3.1.1) 
where it is:   k   stiffness constant 

                    b   damping constant 

 
This system  is one of the simplest dynamic systems in which  elastic, dissipating and inertia 

forces interact. In torsion system   the mass m will be replaced by mass moment of inertia I 

and the force Q(t) by the moment M(t). The solution of the differential equation of motion is 

composed of two parts: the solution of the homogenous equation  

                                            0mq bq kq+ + =&& &  

When we introduce  

 the damping  factor   
2
b rad

sm
δ  =    

 and natural circular frequency  of non-damped system  0
k rad

sm
 Ω =    

we obtain 

                                  2
02 0q q qδ+ + Ω =&& &                                                                       (3.1.2) 

The solution of this homogenous equation is 

                 ( cos sin ) sin( )t t
hq e A t B t Ce tδ δ ϕ− −= Ω + Ω = Ω −                                        (3.1.3) 

A, B or C, ϕ  are the integration constants, which can be determined from the initial 

conditions. 

  The circular frequency of damped system is  

              2 2
0( ) rad

sδ  Ω = Ω −    

 

b 

q       q.        q.. 
k 

m 



 17

The particular solution will be derived from the equation 

 

                                    2
0

( )2 Q tq q q
m

δ+ + Ω =&& &                                                             (3.1.4) 

The solution depends on the form of the force Q(t). 

 

3.1.1 The force of excitation is harmonic   

 

Very important case for practical applications is when the applied force is harmonic 

represented in complex notation: 

                                ( )
0 0 0( ) F Fi i ti t i tQ t Q e Q e e Q eϕ ω ϕω ω += = =% %                                           (3.1.5) 

Using the properties of complex numbers we write the equation (3.1.1) in the form: 

                                          ( )kb i m q Q t
i

ω
ω

 + + = 
 

& %%                                                     (3.1.6) 

We define the complex mechanical impedance as the ratio of the force and velocity: 

                                       ( )
zi Q t kZ Ze b i m

q
ϕ ω

ω
 = = = + − 
 

%
&%

                                       (3.1.7) 

Z is the modulus of mechanical impedance 

          
2 22

2 2
2
0 0

(Re( )) (Im( )) 1 2 r
kZ Z Z b
m

ω ω   
= + = − +   Ω Ω   

% %                                  (3.1.8) 

The phase angle is defined as 

                             

0
0

0
z

m
arctg

b

ω
ω

ϕ

 Ω
Ω − Ω =                                                            (3.1.9) 

The velocity is possible to express as the imaginary part of complex velocity: 

                               0Im( ) sin( )p F z
Qq q t

Z
ω ϕ ϕ

ω
= = + −&& %                                              (3.1.10) 

The complex displacement is the derivative of the velocity… 

                         ( )[ ] ( )QiHti
Zi

Q
Zi

Q
i
qq ZFp

~~exp~
~~~ 0 ωϕϕω

ωωω
=−+===

&
                   (3.1.11) 

( )H iω%  is called complex transfer function of the mechanical system. 

The displacement is the imaginary part of the of the complex solution 

          { } ( ) 













 −−+=−+−==

2
sincos~Im 00 πϕϕω

ω
ϕϕω

ω ZFZFpp t
Z

Q
t

Z
Q

qq         (3.1.12) 
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In next description we notify  the expression ϕπϕ =− 2/Z . It is called the phase retard.  

Using the equation (3.1.8) we get 

                                        )sin(0 ϕϕω −+= Fp tsq                                                     (3.1.13) 

so is the amplitude of forced response: 

                                  
( ) ( )222

0
0

21 ηη rbk

Q
s

+−
=                                                       (3.1.14) 

Here is 
0Ω

=
ωη  the frequency ratio and 

00 2 Ω
=

Ω
=

m
bbr

δ  is the damping ratio. 

The expression stq
k

Q
=0  is the deformation of the spring statically loaded by the amplitude of 

exciting force sometimes called   static deformation. So is defined   frequency transfer or  the 

coefficient of amplification: 

                                 
( ) ( )222

0

21

1

ηη
λ

r
st bq

s

+−
==                                                   (3.1.15) 

This dimensionless quantity is plotted in  the amplitude diagram shown in Fig. 3.2 

 
 
        
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                                 
                                                                        Fig. 3.2 

The amplitude contains the family of curves one for each value of damping ratio br. All curves 

lie bellow the one for zero damping. Thus we see that the amplitude of forced vibration is 

diminished by damping. By zero damping and by 01 ( )orη ω= = Ω , the amplitude goes to 
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infinity. This state is called the resonance. The maxima of various curves of damped 

vibrations do not occur any long for 1η =  but at a smaller value: 

                                            121 2 <−= rm bη  

and the maximum frequency transfer is: 

                                          
2max

12
1

rr bb −
=λ                                                   (3.1.16) 

When the damping ratio is very small 1<<rb  it is possible to use 
rb2

!
max ≈λ . 

The phase angle is given by the expression 

                             

0
0

0Im( )
Re( )z

m
Ztg
Z b

ω
ω

ϕ

 Ω
Ω − Ω = =

%

%
                                        (3.1.17) 

In the equation (3.1.13) we introduced the angle ϕ  which is 

 

                                 1
2Z

Z

tg tg
tg

πϕ ϕ
ϕ

 = − = − 
 

  

 

Substituting in this expression we obtain the phase 

                                 21
2

η
η

ϕ
−

= rbarctg                                                                (3.1.18) 

The equation (3.1.18) is possible to plot in the phase angle diagram (Fig. 3.3), which is also 

of considerable interest. For no damping, it is seen that below resonance the force and the 

displacement are in phase ( 0ϕ = )¸ 

For damping different from zero the other curves represent the phase angle reach the phase of 

90o by resonance. By measuring the phase angle it is possible to determine the exact point of 

resonance. So we have been derived the particular solution. 

The general solution consists of the damped free vibration superposed on the forced vibration. 

                                      )sin()sin( 00 ZF
i tstCeq ϕϕωϕδ −+++Ω= −                         (3.1.19) 

 After a short time the damped free vibration disappears and the forced vibration alone 

persists. Therefore the forced vibration is also called the sustained vibration, while the free 

vibration is known as the transient vibration. 
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                                                          Fig. 3.3 
 
 
3.1.2 The excitation by rotating mass 

 

Very often the excitation is caused by unbalanced rotating mass. Such case is shown on     

Fig. 3.4. The unbalanced rotor is represented by the mass m1 placed on the eccentricity e from 

the axes of rotation. m is the total mass of the equipment. The resultant stiffness is k and the 

damping is b. The vertical inertia force is  

                                                  temF ωω sin2
1=  

The equation of motion is 

                                       te
m
mqqq ωωδ sin2 212

0 =Ω++ &&&  

When we compare this equation with (3.1.4) we see that both equation  
                                                  temtQ ωω sin)( 2

1=  
 
  Therefore the solution is identical to that excited by harmonic force. The amplitude  
of sustained vibrations is given  by following formula 

                               
( ) 222

2
1

0

)2(1 ηη

η

rbm

ems
+−

=                                                    (3.1.20) 
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                                                                   Fig. 3.4 
 
 
The frequency transfer will be 

                                    
( ) ( )222
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ηλ
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m
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s

+−
==                                            (3.1.21) 

This expression is possible to plot in the amplitude diagram (Fig. 3.5). 

   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                                                     Fig. 3.5  
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3.1.3 The force is general function of time 

 

Very often the excitation force is a general function of time. The particular solution is given 

by Duhamel integral: 

                         ∫ −Ω
Ω

= −−
t

t
p dtetQ

m
q

0

)( )(sin)(1 τττδ                                               (3.1.22) 

The analytical solution of this integral is possible for simple functions of general force.  

But the Duhamel integral is possible  advantageous to solve numerically, even when the force 

is obtained a table. In Tab. 3.1 the algorithm for solution on PC is shown. We suppose that the 

force is given tabular. The numerical integration is performed by using  the Simpson rule  

                                         
2

1 2( ) ( 4 )
3

n

n

x

n n n
x x

hf x dx y y y
+

+ +
=

≈ + +∫  

The length h of integration interval is constant and the number N of intervals mast be even. 

Algorithm of numerical solution of response by using Duhamel integral is shown in Tab. 3.1. 

 

3.1.4 Exciting force is a periodic function of time 
 
In many cases the exiting force is a periodic function of time. It means that its value repeat 
after the period TF 
            )()()( FF nTtFTtFtF +=+=    for n = 1, 2, …., n 
In such case it is possible expand the force into Fourier series 

                        ( )∑
∞

=

+=
0

21 sincos)(
i

ii tiFtiFtF ωω                                                   (3.1.23) 

where 
FT

πω 2=  

The determination of Fourier coefficients is well known from mathematics: 
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0
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0
1

0
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)sin()(2

)cos()(2

)(1

ω

ω                                                    (3.1.24) 

The equation (3.1.4) by using (3.1.23) will have the form 

                        ( )∑
=

+=Ω++
n

i
ii tiFtiF

m
qqq

0
21

2
0 )sin()cos(12 ωωδ &&&                            (3.1.25) 
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 START 

 

M ,K,B 
 
 

T0,X0,V0 
 
 

D = B/2/M 
 
 

OM0 = √(K/M) 
 
 

OM = √(OM0^2-D^2) 
 
 

A = (V0+D*V0)/OM 
 
 

N,TV 
 
 

DT = TV/N 
 
 

I = 1 
 
 

F(I) 
 

                         < 
             I=I+1          I:N+1 
                                       ≥       

                        S = 0 

 
                         I = 2 

 
T = I*DT 

 
 

T1 = TV- T 
 
 

1 
Tab.3.1 Numerické řešení Duhamelova  
              integrálu 

 
1 
 
 

S=S+F(I)*EXP(-D*T1)*SIN(OM*T1) 
 
 

                        < 
        I=I+2                I:N                                    

                                       ≥     
 

                        S1 = 0 

 
                              I = 3 

 
T = I*DT 

 
 

T1 = TV-T 
 
 

S1=S1+F(I)*EXP(-D*T1)*SIN(OM*T1) 
 
 

                        < 
         I-I+2              I:N-1 

 
 

                    T1 = TV-DT 

 
 

F1=F(1)*EXP(-D*T1)*SIN}OM*T1) 
 
 

P=(F1+4*S+2*S1)*DT/3 
 
 

OMT=OM*TV 
 
 

Q-((X0*COS(OMT)+A*SIN(OMT)* 
EXP( D*TV)+P/(OM*M) 

 
 

Q,TV 
 

STOP 



 24

In practical applications we do´nt take infinity number of Fourier coefficients, but only n. 

The right hand side of (3.1.25) we arange when used  

      FiiiFiii FFFF ϕϕ cossin 21 ==    for I = 1, 2, …. 

So it is 

                          
i

i
Fiěiii F

F
arctgFFF

2

122
1 =+= ϕ                                               (3.1.26) 

Now we can re-write  the equation (3.1.25) in the form 

                       ∑
=

++=Ω++
n

i
Fii tiF

mm
F

qqq
1

102
0 )sin(12 ϕωδ &&&                                   (3.1.27) 

If holds the law of superposition we can determine the response for each component of the 

force separately and then the resultant response is given by adding all particular calculated 

responses due to separate harmonic terms of (3.1.27).  

The general solution is obtained again from the homogeneous and particular solutions.  

                                           ∑++/=
n

pih qqqq
1

0                                                       (3.1.28) 

In this equation is 

                                      2
0

1010
0 Ω

=
m
F

k
F

q                                                                    (3.1.29) 

                              )sin( 0ϕδ +Ω= − t
h Ceq                                                               (3.1.30) 

                           )sin(0 iFiipi tisq ϕϕω −+=                                                           (3.1.31) 

The amplitude of particular solution is done by 

                         
( ) 222

0

)2(1 ηη ibik

F
s

r

i
i

+−
=                                                         (3.1.32) 

   and                                    

                                       2)(1
2

η
η

ϕ
i
ibarctg r

i −
=                                                        (3.1.33) 

From (3.1.32) we see that, that particular harmonic components magnified the response 

according the value of Fi and the order i. 

Very often the course of forces is known from measurements. In such case the components of 

Fourier series is also possible to get from measured values. We consider the period of the 

force is TF and the number  of  of measurements is N+1. The time interval will be ∆t = TF/N,   

and the time from the beginning of force action is tj = j∆t. 
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We introduce the value 

     
N
j

N
Tj

T
t F

F
j

ππω 22
==  

The measured function will be denoted by jj YtY =)( . The coefficients of Fourier series are 

determined by 
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10

   for I = 1,2,…,l    

The numerical solution on PC is without any problem. The algorithm is shown in Tab. 3.2. 

 

3.1.5 The kinematical excitation 

 

The exciting, considered so far has been done by the force acting on the moving mass. Now 

we shall consider that the frame move harmonically according the formula  

                                                 ( ) sinzq t h tω=                                                                (3.1.34) 

Such case is sometimes called seismic excitation. 

The differential equation of motion of the moving mass will be 

                               [ ] [ ]( ) ( )z zb q q t k q q t mq− − − − =& & &&                                                      (3.1.35) 

After arrangement of (3.1.35) we get 

                           )()()( tftkqtqbkqqbqm ZZ =+=++ &&&&                                                  (3.1.36) 

 

It is seen that the motion is harmonic. If we consider that the base move according (3.1.34) 

the function f(t) is 

                                 tkhtbhtf ωωω sincos)( +=  

Using the notation 
m
k

=Ω0  and 
m
b

2
=δ  the equation (3.1.36) obtains the form 

                              2 2
0 02 2 cos sinq q q h t h tδ δ ω ω ω+ + Ω = + Ω&& &                                         (3.1.37) 

The right hand side of (3.1.37) is possible to simplify by notation  
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                                          0
2
0 0

2 sin

cos
z

z

h p

h p

δ ω ϕ

ϕ

=

Ω =
 

From here we get 

                                            
4 2 2 2 2

0 0 0(2 ) 1 (2 )
(2 )

r

z r

p h h h b
arctg b

δ ω η
ϕ η

= Ω + = Ω +

=
 

By using of these expressions the equation (3.1.37) obtains the form 

                                          2
0 02 sin( )zq q q p tδ ω ϕ+ + Ω = +&& &                                           (3.1.38) 

The particular solution of this equation will be 

                                            )sin(0 ϕϕω −+= Zp tsq                                                     (3.1.39) 

with the amplitude of harmonic motion of the mass 
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2
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η
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s
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+
==                              (3.1.40) 

The course of frequency transfer λ  is shown in Fig. 3.6. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                                                 Fig. 3.6 
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The phase is given by the formula 

                                          
3

2 2

2
1 (2 )

r

r

barctg
b

ηϕ
η η

=
− +

                                               (3.1.41) 

The phase diagram is on Fig. 3.7. 
                    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                                                    Fig. 3.7 
 
3.1.6 Theory of vibration isolation 

 

An unbalanced machine has to be installed in a structure where vibration is undesirable. Such 

situation is not uncommon. An elevator motor in a building and the machine in an automobile 

are examples. The problem consists in mounting the machine in such a manner that no 

vibration will appear in the structure to which it is attached. We consider the rigid frame. 

For this case it is possible to use the Fig. 3.1. The force is transmitted from the moving mass 

to the frame through the spring and the damper. 

                                               TF kq bq= + &  

 The vibrating mass moves according the law 

                                   0 0sin( ) cos( )F Fq s t q s tω ϕ ϕ ω ω ϕ ϕ= + − = + −&  

Therefore we get for the transmitted force 

                                   0 0sin( ) cos( )T F FF s k t s b tω ϕ ϕ ω ω ϕ ϕ= + − + + −                     (3.1.41) 

The equation (3.1.41) is better transform in the form 
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START 

 
 

M, K, B 
 
 

B/2/M → D 
 
 

SQRT(K/M) → OM0 
 
 

D/OM0 → BR 
 
 

TF, A, L 
 
 

1 → J 
 
 

Y( J ) 
 
 

F0 +Y(J) → F0 
 
 

≤ 
            J+1→J           J:N+1 

 
 

1 → I 
               3 

 
1                            0.→ S 

 
 

0.→ S1 
 
 

1 → J 
            2 

 
2.*PI*I*(J-1)/N → G 

 
 

S+Y(J)*cos(G) → S 
 
 

S1+Y(J)*sin(G) → S1 
 
 

1 
 
 
 
 
 
 

4 
 
 

                              ≤ 
    5         I+1→I           I:L 
 

 
1 
 

                             ≤ 
    2        J+1→J         J:N+1 
                                           > 
                                            

2*S/A → F1(I) 
 
 

2*S1/A → F2(I) 
 

 
                             ≤ 
   3        I+1→I             I:L 
                                           > 
                                           

2*PI/TF → OMF 
 
 

OMF/OM0 → ETA 
 
 

1 → I 
 
 

I*ETA → C 
 
 

2*BR*I*ETA → C1 
 
 

F(I)/(K*√((1-C**2)**2+C1**2)) → S(I) 
 
 

arctg(C1/(1-C**2)) → FI(I) 
 
 

                            ≤ 
          I+1 → I              I:L 
 
 

1 → J 
              6 

 
(J-1)*TF/A → T 

 
 

1 → I 
              5 

 
X+S(I)*sin(I*OMF*T-FI(I))→X 

 
 

4 
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4 
 
 

                              ≤ 
    5         I+1→I           I:L 
 
                                         > 
 

T, X 
 
 

                              ≤ 
    6       J+1→J         J:N+1 
 
                                         > 
 

STOP 
 
 
Tab. 3.2 . The algorithm of  response on periodic force.  

 

                                      0 sin( )T T F TF F tω ϕ ϕ ϕ= + − +                                                (3.1.42)                            

This form we get by putting  

                                        0 0 cosT Ts k F ϕ=  

                                     0 0 sinT Ts b Fω ϕ=  

From these equations we get 

                                   2
0 0 1 (2 )T rF s k b η= +                                                               (3.1.43) 

Substituting for so from equation (3.1.14) we obtain the amplitude of transmitted force 

                               
2

0
0 2 2 2

1 (2 )

(1 ) (2 )
r

T

r

Q b
F

b

η

η η

+
=

− +
                                                          (3.1.43) 

 

We can use the transmissibility factor 0

0

TFtransmitted force
impressed force Q

λ = =  and get 

                                
2

2 2 2

1 (2 )

(1 ) (2 )
r

r

b

b

η
λ

η η

+
=

− +
                                                            (3.1.44) 

The form of equation (3.1.44) is the same as (3.1.41). Therefore the amplitude diagram is the 

same as in Fig. 3.6. 

The phase is given by the formula 

                                      (2 )T rarctg bϕ η=                                                                   (3.1.45) 
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                 1 1 1, ,q q q& &&              2 2 2, ,q q q& &&          , ,n n nq q q& &&  
                  m1                       m2                     mn        kn+1
 k1                        k2                   k3        kn  
                         
          b1                         b2         b3        bn                 bn+1 

3.2 Vibrations of n-degree-of-freedom systems 
 

Exactly all systems have the mass as well as stiffness distributed continuously in the whole 

system. Even in the simplest system – the mass point on a spring – the mass is not 

concentrated in the point and the spring is not mass less. When we need only one natural 

frequency we construct a mechanical model like in the Fig.1. This model represents the 

searched properties with enough accuracy. Simpler model enables more easy mathematical 

calculation and many times gives a sufficient accuracy. If we need to know also the higher 

 

                                                       Fig. 3.8 

 

natural frequencies, the model must be more complicated. Usually we design more  

complicated mechanical model – so called linear desecrete model. We obtain as many natural 

frequencies, and as many natural modes as they are degrees of freedom., 

Let we consider the model on the Fig. 3.8. The equations of motion is possible to obtain by 

using of Lagrange equations, or Hamilton´s principle. In such simple models it is possible to 

write directly for each released mass. 

        

)()()(

)()()(
)()()(
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23323212332321222

1221212212111

tQqkkqkqbbqbqm

tQqkqkkqkqbqbbqbqm
tQqkqkkqbqbbqm

nnnnnnnnnnnnn =++−++−
•
•

=−++−−++−
=−++−++

+−+− &&&&

&&&&&

&&&&

 

: 

We obtained n simultaneous differential equations of second order with constant coefficients. 

When the number of degrees increases the solution is difficult and not providing an easy 

survey. Therefore we write the set of equation of motion in matrix notation: 

                                    Q(t)KqqBqM =++ &&&&                                                                (3.2.1) 

In this equation is: 
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q,qq, &&&  displacement, velocity, acceleration, respectively. They are expressed by a column  

matrix [ ]n
T qqq ,....., 21=q . [ ]n

T QQQt ,....,,)( 21=Q  is the vector of time depending 

exciting forces. M is the mass matrix, B is the matrix of damping and K is the stiffness 

matrix . At conservative systems are squared, symmetric and are of order n. When we 

consider   model on Fig. 3. 8, they have the form: 
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3.2.1 Free, un-damped vibrations 

 

Free, un-damped vibrations described by equation 

                              0KqqM =+&&                                                                           (3.2.2) 

is important for the next solutions. Therefore we concern on it in  detail. 

We consider the solution of (3.2.2) 

                                  tie Ω= uq  

Here u is a vector of amplitudes of harmonic motion [ ]n
T uuu ,...,, 21=u . Ω is the circular 

frequency. Equation (3.2.2) by using the assumption of harmonic motion will have the 

form 

                                      ( )2− Ω =K M u 0                                                            (3.2.3) 

(3.2.3) represents the set of homogenous equations. For non-trivial solution must be the 

determinant equal to zero 

                                         0det 2
0 =Ω− MK                                                             (3.2.4) 

This determinant is called the frequency determinant. When we developed this 

determinant we get the frequency equation of n order for 2
0Ω : 

                       0...... 0
2
01

)1(2
01

2
0 =+Ω++Ω+Ω −

− aaaa n
n

n
n  

While the matrices are positive and definite the roots of this equations are real values: 
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                                      n00201 .......0 Ω≤≤Ω≤Ω≤  

When we substitute a natural frequency in (3.2.3) we obtain again the set of homogenous 

equations. Therefore it is necessary to divide each equation by one element of the 

amplitude vector uri. We get for example  

                               







=
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1 ,.......,,
r

rn

r

r

r

rT
r u

u
u
u

u
u

v  

By this way it is possible to create n variable sequences. The vectors vr gives the shape of 

the vibrating system but not the absolute value of the displacements of its members. 

Therefore these vectors are called modal vectors. From n sequences we choose that one, 

whose maximum absolute value is 1. This process is called normalization. The 

normalization  is possible to carry out by using one of the following procedure… 

                           1=r
T
r vv  

                         1=r
T
r Mvv  

                         1=r
T
r Kvv  

Which procedure is advantageous we shall see later. 

The displacements that belong to r mode are given by the following equation 

                             0 ri t
r re

Ω=q v%                                                                             (3.2.5) 

or in the real region 

                    )sin( 0 rrr t ϕ+Ω= vq                                                                       (3.2.6) 

From this equation it is seen, that the mode does not change during the vibration.  

The general solution of  (3.2.2) is given by linear combination of all modes  

                               ∑
=

Ω=
n

r

ti
rr

ÉReC
1

~~ vq                                                                  (3.2.7) 

rC%  are complex integration constants. In real region  (3.2.7) obtains the form 

                            0
1

sin( )
n

r r r r
r

C t ϕ
=

= Ω +∑q v                                                        (3.2.8) 

or 

                     ∑
=

Ω+Ω=
n

r
Orrrrr tBtA

1
0 )sincos(vq                                               (3.2.9) 

The integration constants  Cr, ϕr or Ar, Br pro r = 1,2,…,n are determined from initial 

conditions. The modal vectors is possible arrange in modal matrix 
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And the natural circular frequencies in spectral matrix 
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3.2.1.1 Orthogonality of vibration modes 

 

Let we consider that researched mechanical system has natural circular frequencies 0 0r sΩ ≠ Ω  

Equations (3.2.3) are written in the form 

                                    
( )
( ) 0vMK

0vMK

=Ω−

=Ω−

ss

rr
2
0

2
0  

  

We multiply the first equation by the vector T
sv  and the second one by T

rv : 

                                      
0vMKv

0vMKv

=Ω−

=Ω−

sOs
T
r

rr
T
s

)(

)(
2

2
0  

 The second of these equations will be transposed  

                                       ( ) 0vMKv =Ω− rs
T
s

2
0  

Now we subtract this equation from the first one: 

                                      ( ) 02
0

2
0 =Ω−Ω r

T
ssr Mvv  

Because it has been supposed that sr 00 Ω≠Ω must be valid 

                                            0=r
T
s Mvv                                                                      (3.2.12a) 

And by similar procedure we get 

                                            0=r
T
s Mvv                                                                       (3.2.12b) 

Always  when   sr ≠                                                                      
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(3.2.12a,b) are the orthogonality relationships between natural modes of distinct natural 

frequencies. In vibration of mechanical systems they say that if the system vibrate by one 

natural frequency it is in the system only the mode belonging to the natural this frequency. It 

is also possible to say:  The mode vectors belonging to various natural frequencies are 

orthogonal with respect to the mass matrix as well the stiffness matrix. The quadratic forms 

                                             T
r r yrk=q Kq  

                                             T
r r yrm=q Mq                                                                                         (3.2.13) 

are respectively called generalized stiffness and generalized mass of mode r. The 

orthogonality relationships is possible to write in more complex form  

                         T T
r yr ym   = = =  V MV v Mv M  

                                                                                                                                      (3.2.14) 

                            T T
r r yrk   = = =   yV KV v Kv K  

V is called the modal matrix. The matrices My, and Ky are diagonal. We notice that the mass 

matrix is positive definite. Therefore all generalized masses are positive. 

The modal matrix is possible to use to define the main or normal coordinates. The normal 

coordinates y we obtain by modal transformation: 

                                    1 or−= =y V q q Vy                                                             (3.2.15) 

The solution of linear systems is very advantageous, because remove the constraints between 

the equations of motion. 

Let we consider the un-damped system 

                                            )(tQKqqM =+&&  

If substituting for q from (3.2.15) we get 

                                        )(tQKVyyMV =+&&  

Multiplying this equation from left by modal transformed matrix VT we obtain 

                                    ( ) ( )y y y t=+ = T tM y K y V Q Q&&  

Because the matrices My and Ky are diagonal we get n independent equations 

                        )(tQykym yrryrryr =+&&    for r = 1,2,…,n                                            (3.2.16) 

If the modal vectors have been normalized ( EMVVM == T
y  ), the equation of motion will 

be 

                            )(tyy QyKy =+&&                                                                               (3.2.17) 

and                          2
0ΩK =y  
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3.2.1.2 Determination of natural frequencies and modal vectors by Jacobi´s method 

 

To calculation the natural frequencies and modal vector is possible applied the method in 

mathematics called eigenproblem. 

The equation (3.2.3) is possible to arrange on the form 

                                         ( ) 0uEKM =Ω−−
rr

2
0

1  

We denote AKM =−1  and rr λ=Ω2
0 and substitute these values in the previous equation 

                                                  r rλ= rAu u                                                              (3.2.18) 

This is the mathematical formulation of eigenproblem. If matrix A is symmetrical the 

equation (3.2.18) is possible to solve by Jacobi¨s method. Therefore, using it to compute 

vibration natural frequencies of a mechanical system requires the preliminary construction of 

the symmetric dynamic flexibility matrix of the system. 

Although it is hundred years old, Jacobi´s method is still frequently used. Indeed it is 

characterized by an exceptional stability and a very great simplicity. It can be applied without 

restriction to any symmetric matrix, whether its eigenvalues are positive, negative or zero.  

Jacobi´s algorithm consists of progressively reducing the initial symmetric matrix to the 

diagonal form by an infinite sequence of orthogonal transformations. To do so, we construct a 

series of matrices verifying the recurrence relationship 

We introduce the denotation  

                        k
TT

k
T
kk SSASSSST ....... 2111−=   where To  = A 

The elements of matrix Tk are )(k
ijt  and elements of Sk are )(k

ijs . 

We define  ( )∑∑
= =

=
n

i

n

j

k
ijk tv

1 1

2)(   for all cases when i ≠ j  and  k = 0,1,2,… 

                   ∑∑
= =

=
n

j

n

i

k
ijk tw

1 1

2)( )(  for k = 0,1,2,… 

During each of transformation steps we ask zero of not-diagonal members but so, that it will 

be valid  

   kkkk wwavv =< ++ 11   when  0lim =
∞→ kk

v  

During the calculation we try to nullify the non-diagonal element, for example ( 1)k
pqt −  so, that 

( ) 0k
pqt = . This is possible to produce by a transformation matrix Sk. We can imagine the 
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transformation geometrically by rotation of the axes in the plane by the angle kϑ . If we want 

to nullify the element on the row p and column q the transformation matrix will be 

                     

1 0 0 0 0 0
0 1 0 0 0 0
0 0 cos 0 sin 0
0 0 0 1 0 0

sin 0 cos
0 0 0 0 0 1

k k
k

k k

ϑ ϑ

ϑ ϑ

 
 
 
 

=  
 
 −
 
  

S  

By using this transformation matrix we make the necessary transformation 

                                    kk
T
kk STST 1−=  

After the necessary multiplication we get: 

  
k

k
qjk

k
pj

k
qj

k
jq

k
k

qjk
k

pj
k

pj
k

jp

tttt

tttt

ϑϑ

ϑϑ

cossin

sincos
)1()1()()(

)1()1()()(

−−

−−

+==

−==
   for  qjapj ≠≠                                     (3.2.18) 

 
k

k
qik

k
pi

k
qi

k
iq

k
k

qik
k

pi
k

pi
k

ip

tttt

tttt

ϑϑ

ϑϑ

cossin

sincos
)1()1()()(

)1()1()()(

−−

−−

+==

−==
    for  qiapi ≠≠                                     (3.2.19) 

 

( ) 02cos2sin
2
1

cossin2cossin

cossin2sincos

)1()1()1()()(

)1(2)1(2)1()(

)1(2)1(2)1()(

=+−==

++=

−+=

−−−

−−−

−−−

k
k

pqk
k

qq
k

pp
k

qp
k

pq

kk
k

pqk
k

qqk
k

pp
k

qq

kk
k

pqk
k

qqk
k

pp
k

pp

ttttt

tttt

tttt

ϑϑ

ϑϑϑϑ

ϑϑϑϑ

                                            (3.2.20) 

 )1()( −= k
ij

k
ij tt   for qjapi ≠≠  

While we nullify the element )(k
pqt  the third of equation (3.2.20) must be zero.  Therefore 

        )1()1(

)1(

)1()1(

)1( 2
2
12

2 −−

−

−−

−

−
=⇒

−
−= k

pp
k

qq

k
pq

kk
qq

k
pp

k
pq

k tt
t

arctg
tt

t
tg ϑϑ                                             (3.2.21) 

 By this manner we continue in all next steps. The number of orthogonal transformations 

needed to achieve the diagonal form is infinite. In practice, however, the process can be 

stopped when the non-diagonal terms tend to zero with the required accuracy. Usually we 

finished the process when the norm of non-diagonal terms reach the required accuracy or the 

average value of maximum non-diagonal element is smaller then some specified value: 

                       
1

2
2

1 1
/( ( 1))

n n

ij
i j i

a n n q
−

= = +

 
− = 

 
∑ ∑  
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The eigenvectors of matrix A are given by the orthogonal column matrix Sk. If we define  

Rk=S1 S2…..Sk = Rk-1Sk we can use the elements from the last step and determine the elements 

of eigenvector: 

    

qpjprorr

rrr

rrr

k
ij

k
ij

k
k

iqk
k

ip
k

iq

k
k

iqk
k

ip
k

ip

,

cossin

sincos

)1()(

)1()1()(

)1()1()(

≠=

+=

−=

−

−−

−−

ϑϑ

ϑϑ

                                                                            (3.2.22) 

On the beginning of the iteration R0 = E. The algorithm of the solution is in Tab. 3.3. 

 

3.2.1.2 Symmatrisation of a matrix – Choleski algorithm 

 

Jacobi´s method is applicable only for symmetric matrices. In mechanical systems  

KMA 1−=  .This matrix is not symmetric even if matrices M and K are symmetric. 

If we want to use Jacobi´s method  it is necessary the matrix A change to symmetric one. 

Because the mass matrix is positive definite, it can be factorized into a product of lower 

triangular matrix L and its transposed counterpart: 

                                                        LLM T=                                                             (3.2.23) 

We use the Choleski triangularization algorithm. If the mass matrix is diagonal it must be 

                  [ ]











==== −−

i
i m

diagamdiag 1T1T LLLL                                     (3.2.24) 

For the eigenproblem it is valid 

                                                     vKvM 1 λ=−                                                           (3.2.25) 

Substituting in  this equation for M from (3.2.23) and define 

                                                       yLv 1−=                                                                (3.2.26) 

 we get 

                                       

                                            yLyKLLL 111T −−−− = λ  

After multiplying this equation by matrix L it will be obtained : 

                                                 yyKLL 11 λ=−−                                                              (3.2.27) 
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                                                     Tab. 3.3.Jacobi´s algorithm                                   
 

 
START 

 
 

N 
 
 

I=1 
 
 

J=1 
 
 

A(I,J) 
 
 

A(J,I)=A(I,J) 
 
 

                             < 
               J=J+1            J:N 
 
                                         ≥ 

 
R(I,I)=1 

 
 

                             < 
               I=I+1            I:N 
                                         ≥        

 
Q1=0. 

 
 

I = 1 
 
 

J = I + 1 
 
 

Q1=Q1+A(I,J)^2 
 
 

                             < 
              J=J+1             J:N 
 
                                          ≥ 
                              < 
                I=I+1          I:N-1 
 
 
                    true 

19 Q1.EQ.0 
 
                                         false 

1 

 
                                    1  
                                                      
 

Q1=2*√(Q1/(N*(N-1))) 
 
 

Q2=Q1*10-9 
 

             15 
 

P1=0 
 

P = 1 
              14   

 
Q=P+1 

               13 
 

        ne 
 10           ABS(A(P,Q)).GT or EQ.Q1 

 
       ano 

 
P1 = 1 

 
 
                    X9=(A(P,P)-A(Q,Q))/2 
 
       ano 
                               X9.EQ.0 

 
 

                           Y8=-A(P,Q)/X9 
 
        
                        X8=0.5*ATN(Y8) 
 
          X8=PI/4 
 
                                S=SIN(X8) 
 
 
                                    S2=S*S 
 
 

C2=1-S2 
 
 

SC=S*C 
 
 

I = 1 
        12 
  
                                    2 
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2 
 

           ne 
  11                 I.EQ.P or I.EQ.Q 

         ano 
 

 X9=A(I,P)*C-A(I,Q)*S 
 
 

A(I,Q)=A(I,P)*s+A(I,Q)*C 
 
 

 A(I,P) = X9 
 
 

A(I,P)=A(P,I) 
 
 

A(I,Q)=A(Q,I) 
 
 

X9=R(I,P)*C-R(I,Q)*S 
 
 

R(I,Q)=R(I,P)*S+R(I,Q)*C 
 
 

R(I,P) = X9 
 

                         < 
   12       I-I+1         I:N 

 
3 ≥ 

 
X9=2*A(P,Q)*SC 

 
 

Y9=A(P,P)*C2+A(Q,Q)*S2-X9 
 
 

A(Q,Q)=A(P,P)*S2+A(Q,Q)*C2+X9 
 
 

   A(P,P) = Y9 
 
 

3 
 

 
                                          3 
 
 
                              A(P,Q)=A(Q,P) 
 
  10 
                           < 
  13           Q=Q+1         Q:N 
 
 
                           < 
  14           P=P+1         P:N-1 
 
 
                ano 
  15                            P1.EQ.0 
 
                           ano 
         Q1=Q1/N       Q1.GT.Q2 
                                           ne 
 
                                       I=1 
   18 
 
                                     J=I+1 
 
     17 
 
            16               A(I,I).LT.A(J,J) 
 
 
                                    X9=A(I,I) 
 
 
                                 A(I,I)=A(J,J) 
 
 
                                    A(J,J)=X9 
 
 
                                        K = 1 
   20 
 
                                    X9=R(K,I) 
 
 
                                           4 
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                                         4 

 

 

                               R(K,I)=R(K,J) 

 

 

                                 R(K,J)=X9 

 

                                  < 

  20            K=K+1         K:N 

   16                                       ≥ 

 

                                < 

  17           J=J+1               J:N 

                                              ≥ 

 

   19           I=I+1              I:N 

 

 

                                           5                   

 

 

                                           5 

 

 

                                         I = 1 

 
                               A(I,I), √(A(I,I)) 
 
 
                                         J = 1 
 
 
                                         R(J,I) 
 
                               < 
               J=J+1                  J:N 
 
                                                ≥ 
                                <            
                I=I+1                  I:N 
                                                ≥ 
 
                                         STOP 
         

 

 

 

 

Because 11 −− KLL  is symmetric it is possible to apply the Jacobi´s method. Because the 

similarity transform was produced, the natural frequencies do not change. To obtain right 

vectors it is necessary apply the transformation according (3.2.26). 
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3.2 1 4 Reduction to tri-diagonal form – Householder´s method  
 
Hauseholder´s method is e successive transformation method for reducing the initial matrix to 

a tri-diagonal form in (n - 2) steps. Unlike Jacobi´s method, it implies a finite number of 

transformations. Because of their low cost, tri-diagonalization methods are widely used for 

solving moderate–size problems. 

We aim to construct successive orthogonal transformation matrices P1, P2,…, Pr so that the 

matrix resulting from the rth transformation: 

                  1 1 1 1 1... ...T T T
k k k k k k− − −= = T

k kAA P P P AP P P P P                                                   (3.2.28) 

takes the form 

 

**
***

*** 0

0 *****
*****
*****

 
 
 
 =
 
 
  

rA OO  

     

 

 

To do so, we consider elementary transformation 

                          1T
k k =v v                                                                                             (3.2.29) 

                     2 T
k k k= −P E v v                                                                                        (3.2.30)  

By definition, these are orthogonal and symmetric. The transformations are constructed so as 

to leave the (k – 1) first rows and columns of Ak-1 unchanged and to put to zero the non-

tridiagonal terms of line and column number k; This condition is fulfilled by equating to zero 

the first k terms off vk. We suppose that the vector vk has its first (k-1) elements equal to zero 

                                [ ]0 0 0 . . .***. . .*T
k =v                                                                (3.2.31) 

 

 

The task is now to determine the elements vkk to vkn so that must be valid (3.2.29) and (n – k) 

non-tridiagonal elements  in the row and column of matrix Ak  are equal to zero. The 

proceeding will be so, that we put 

                                     2
,1 jk

n

kj
aS −

=
∑=                                                                           (3.2.32) 

r rows

r columns 

(k – 1) 
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                           ( )[ ]Sav kkkk /1
2
1

,1
2
, −±=                                                                    (3.2.33) 

                      nkjSvav kkjkjk ,.....,1)2/( ,,1, +=±= −                                              (3.2.34) 

We choose the sign in (3.2.33) and (3.2.34) so, that the solution will be most precise. Because 

vkk in (3.2.34) is in the denominator it has to be as great as possible. Therefore we choose the 

sign in (3.2.33) equal to the sign of ak-1,k and the same sign will be used in (3.2.34). So is 

given the principle of the solution. For maximum effectiveness we use the following 

proceeding: 

From (3.2.28) we determine 

                           )2(11
T
kkkkk vvEAPA −= −−                                                               (3.2.35) 

We choose the notation kkk vAw 1−=  and we write 

                                 T
kkkkk vwAPA 211 −= −−                                                               (3.2.36) 

We determine from (3.2.28) 

                           T
kk

T
kkkkk

T
kk vqqvAPAPA 2211 −−== −−                                          (3.2.37) 

where it is 

      

                                     kk
T
kkk vwvwq −=  

 

3.2.1.5 Rayleigh´s quotient  
 
Very often is sufficient to know only one natural frequency, usually the lowest one. We show 

now how to do it. We start from equation (3.2.3) 

                                          vrr MvKv 2Ω=  

We multiply this equation from right hand side by vector T
rv . Both sides of the equation are 

then scalars and we may determine 2
rr Ω=λ : 

                                             
r

T
r Mvv

vv r
T
r

r
K

=λ                                                                     (3.2.38) 

vr are the modal vectors of free non-damped vibration. In praxis the modal vectors rv are 

judged so (3.2.38) obtains the form 

                                              
r

T
r

r
T
r

r vMv
vKv

=λ                                                                    (3.2.39) 
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                            Tab. 3.4 The algorithm of Householder´s method 

 
                                START 

 
 

                                   I = 1 
 
 

                                   J = 1 
 
 

                                 A(I,J) 
 
 

                             < 
             J=J+1             J:N 

     
                                        ≥ 
                               
           I=I+1              I:N 
 
 
 
                                 K = 2 
  
      4 
                                  S = 0 
 
 
                                  I=K-1 
 
 
                           S=A(I,K)^2+S 
 
 
 
   5         I=I+1              I:N 
 
                 yes                  no 
 
    6         K=K+1       S.EQ.0 
 
 
                                   S=√(S)    
 
 
                                       1 
 
 
 
 
                                                                             

 

 
                                             1 
 
 
                Z=(1+SGN(A(K+1,K))*A(K+1,K)/S)/2 
 
 
                                           I = 1 
 
 
                                        V(I)=0 
 
 
                                  < 
              I=I+1             I:K 
 
                             V(K+1)=√(Z) 
 
 
                                  I=K+2 
 
      

            V(I)=SGN(A(K,I))/(2*V(K)*S) 
                                    < 
                    I=I+1               I:N 
                                                 ≥ 
 
                                            I = 1 
    7 
 
                                            J = 1 
    6 
                           yes                       no 
               D=1                     I.EQ.J          D=0 
 
 
 
 
 
                                P(I,J)=D-2*V(I)*V(J) 
 
 
                                              2  
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                                         2 
 
 
                                PT(J,I)=P(I,J) 
 
                              < 
     6       J=J+1               J:N 
 
 
                             <       
     7        I=I+1                I:N 
 
 
                              B=PTMULTP 
 
 
                                         3 
 

 
                                         3 
 
 
                               A=BMULTP 
 
                              < 
    4        K=K+1           K:N-2 
 
 
 
                                         A 
 
 
                                      STOP 

 
 
This equations determines so called Rayleigh´s quotient which has following properties: 

1. If the judged vector rv  is judged with some accuracy the quotient is of one order more 

accurate 

2. If the vector rv  is equal to the exact value vr the Rayleigh´s quotient is equal to the 

real value of the square of natural frequency Ωo. 

3. If the quotient reach the values of all modes, then it will be in the interval of accurate 

natural frequencies. 

If we multiply the nominator and denominator of the equation (3.2.38) ve may also write 

                                         *
Pr

Kr
r E

E
=λ                                                                          (3.2.40) 

*
KrE is the unit kinetic energy of mode r (Ωor = 1) 

 

3.2.2 Reduction of number of degree of freedom 

 
If the mechanical system has many degree of freedom and we are not interesting about the 
higher natural frequencies we reduce the number of freedom. Always must be satisfied the 
condition that the natural frequencies have to be equal to the frequencies of the original 
mechanical system. In next text we show two very often used methods of reduction. 
 
3.2.2.1 Reduction by transformation of the mechanical model 

 
This method uses step by step transformation of the mechanical model. Each system is 

possible is possible to divide on a raw of separated parts of two kinds (Fig.3.9) 
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                         I                                                     I1                 I2 
ϕ1          k1                 k2           ϕ2          ϕ1                        k                        ϕ2 

         
M1                                            M2         M1                                                  M2  
 

a) b) 
                                                      Obr. 3.9    

 
 
By free vibration transfer the elastic part of the mechanical system the torque Mi. Therefore 

we suppose that the system is loaded by external harmonic load in points 1 and 2.. 

The system a) 

                

222

111

2211

)(
)(

0)()(

Mk
Mk

kkI

−=−
=−

=−+−+

ϕϕ
ϕϕ

ϕϕϕϕϕ&&
 

We substitute the harmonic components ,, 0
ti

ii
ti

m eMMe ωωϕϕ ==  and from the second 

equation we determine 

                    
1

01
1 k

M
mm −= ϕϕ  

The previous set of equations obtains the form 

 
2

1 1 2 2

2
1 2 1 1 2 2

2 01
1 2 1 1 1 2 2

1

( ) ( ) 0

( ) 0

( )( ) 0

m m m m m

m m m

m m m

I k k

k k I k k
Mk k I k k
k

ω ϕ ϕ ϕ ϕ ϕ

ω ϕ ϕ ϕ

ω ϕ ϕ ϕ

− + − + − =

+ − − − =

+ − − − − =

 

We eliminate ϕm 

    

)()1(

0

2

2121

21
011

2

2
2

1
2

01
1

21
22

2

1

01
12

ωϕωϕ

ϕωϕωϕ

kk
I

kk
kkM

k
I

IM
k

kkk
k

IM
k

mm

mmm

−
+

−−=

=−
+

−−+
 

Using the natural circular frequency of the system a) 

                           
I

kk
a

21
0

+
=Ω  

we obtain 
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01
1

2

1
2

02

012
0

2

21
1

2

2
2

)1(

)1)(11()1(

M
k

IIM

M
kkk

I

m

a
mm

ωϕω

ωϕωϕ

−+=

Ω
−+−−=

                                                    (3.2.41) 

The system b) 

The equations of motion are 

    
21222

12111

)(
)(

MkI
MkI

=−+
=−+

ϕϕϕ
ϕϕϕ

&&

&&
 

We suppose ti
ii

ti
mii eMMe ωωϕϕ 0; == . Then 

         01211
2

1 )( MkI mmm =−+− ϕϕϕω  

         02122
2

2 )( MkI mmm =−+− ϕϕϕω  

From here 

    
( ) 01

22
12

0

2
2

2102

011
21

2

11

11

M
k
IIIM

M
kk

I

m
b

mm







 −+








Ω

−+=

−





 −=

ωϕωω

ϕωϕ

                                             

The natural frequency is given by 

                       k
II

II
b

21

21
0

+
=Ω  

Finally we get 

     
( ) 01

22
12

0

2
2

2102

011
21

2

11

11

M
k
IIIM

M
kk

I

m
b

mm







 −+








Ω

−+=

−





 −=

ωϕωω

ϕωϕ

                                               (3.2.42) 

The principle of this method is in mutual transformation of one system by the second one.  

 
The transformation of the system a) by the system b) 

 

In this case is valid 

            
21

111
kkk

+=
′

     or   
21

21

kk
kkk

+
=′                                                                    (3.2.43) 

Comparing terms by ϕm1 and M01 we get 
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    1 2
1 2

1 2 1 2

k kI I and I I
k k k k

′ ′= =
+ +

                                                                          (3.2.44) 

 

The transformation of the system b) by the system a) 

 
In this case it is 

                                      21 III +=′′                                                                           (3.2.45) 

Comparing (3.2.41) and (3.2.42) we get 

                  1 2 1 2
1 2

2 1

I I I Ik k and k k
I I
+ +′′ ′′= =                                                             (3.2.46) 

Using (3.2.43) and (3.2.44) the equations (3.2.42) obtain the form 
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                                            (3.2.47) 

and using (3.2.45) and (3.2.46) will be 
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                                           (3.2.48) 

Comparing (3.2.47) with (3.2.41) we see that the difference is only in members )1( 2
0

2

aΩ
− ω . If is 

5,2≤Ω
ω  the transformation is with sufficient accuracy. The process is shown on Fig. 3.10. 

The algorithm is following: 
1. We determine the subsystem with maximal natural frequency 

     a) 
I

kk
a

21
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+
=Ω      b) k

II
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b
21

2
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1
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=Ω  

1. We make the reduction of the system – change of subsystems: 

a → b   
21

2
2

21

1
1

21

21 ,,
kk

kII
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kI
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kkk
+

=′
+

=′
+

=′  

 

b → a  k
I

IIkk
I

IIkIII
1

21
2

2

21
121 ,, +

=′′+
=′′+=′′  

The procedure repeats as long as we get the required number of degrees of freedom. The 
advantage of this method is in objective. We know how the original system was changed. 
However, it does not suit for systems with many degrees of freedom.  
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3.2.2.2 Lanczos – Ojalvo method of reduction 

 
The mechanical systems of high degree of freedom is better to use some method that works 

automatically according a fixed algorithm. One of such method is Lanczos method. The 

principle of this method consists of generating a subspace including the system fundamental 

eigensolutions by inverse iteration on one starting vector. 

Let we consider the equation 

     

                                             MvKv λ=                                                                     (3.2.49) 

The matrices are positive definite symmetric matrices of order n. Lanczos method reduce the 

system so, that the chosen number m of calculated natural frequencies 2ωλ = agrees with first 

m numbers of the original system. 

 
 
 
        b → a                                            a → b         

Obr. 3.10
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Let we choose m < n and form the reduced matrix [ ]irR =  of order (n,m). ri are so called 

Lanczos vectors of order (n,1). Then we define vector y (m,1) so that it is valid 

                                               Ryv =                                                                           (3.2.50) 

Substituting this equation into (3.2.49) we get 

                                          MRyKRy λ=  

We multiply the equation from left hand side by transposed matrix RT: 

                                  ( ) ( )yMRRyKRR TT λ=                                                             (3.2.51) 

By this way is the problem reduced on the order m. The reduced matrix [ ]mrrrR ,....,, 21=  will 

be determined by using the Lanczos mechanism so that the matrix MRRT is a unit diagonal 

matrix and matrix KRRT  will be tri-diagonal. Then (3.2.51) is possible to write 

                                          T λ=R KRy y                                                                      (3.2.52) 

So the original problem is reduced on the problem of symmetric matrix, which is not only 

reduced to the order m but more over is tri-diagonal. 

The algorithm of Lanczos improved by Ojalvo is described: 

1. The product KM 1− is calculated 

2. The judgement 1r  of the vector r1 is done. It was proved that the best results are 

obtained by using the generator of random numbers in the interval (0.1). 

3. Now follows the calculation of vectors mrrr ,....,, 21  in steps form 1 to m by following 

procedure 

4. i
T

ii rMr=2β   

5. 
i

i
i

rr
β

=   (By this step is made the normalization) 

6. i
T
ii Krr=α  

7. For i =m  one continue from step 13. 

8. For i = 1 : 111
1

2 )( rrKMr α−= −  

for i > 1 (I = 1,2,…,m-1) 1
1

1 )( −
−

+ −−= iiiiii rrrKMr βα  

9. It will be performed the loop of orthogonalisation in steps s = 0 up to s. In these steps 

will be made the correction of the vector ri+1so that it will be orthogonal with vectors 

r1, r2,…., ri .  s = 0 

10. ji
s

i
T

ji

i

j

s
i

s
i −++−+

=
+

+
+ ∑−= 111

1
1

1
1 )( rrMrrr  
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11. If in the sum is   ε〉+−+
s

i
T

ji 11 rMr   then s = s + 1 and we go to the position 10. 

ε is the accuracy, for example 10-9 

12. After successful loop ( ε≤+−+
s

i
T

ji 11 rMr ) we use for next calculation 1
11
+

++ = s
ii rr  and we 

continue from position 4 

13. All vectors r1, r2,…., rm  are determined. Simultaneously are determined the necessary 

values ii βα ,  for i = 1,2, ….,m, which are used to perform the matrix 
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14. The eigenvalues and aigenvectors using some standard method (Jacobi).  

15. We determine the modal vector of the original matrix 

                                            Ryv =  

A detailed analysis of the method shows that the convergence is extremely fast.  Since 

it is based on the inverse iteration process applied to only one starting vector, it can be applied 

to very large systems with low cost and storage requirements.  

 

3.2.3 Free damped vibrations 
 
The vibration of a system with damping is described by the equation 

                                    0KqqBqM =++ &&&                                                                    (3.2.53) 

The presence of the damping complicates considerably the solution of the problem and makes 

it more difficult to understand dynamic system behaviour. 

B is a square symmetric matrix of order n. The construction of this matrix is very difficult 

because we do not know nor the arrangement of linear dampers nor its damping constancies. 

Therefore we introduce the proportional damping described as a part of mass matrix and 

stiffness matrix 

                                            KMB βα +=                                                                    (3.2.54) 

In this equation the term αM represents the external damping and βK represents the internal 

material damping. By proportional damping the rule of orthogonality is simple 
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                                       srpros
T
r ≠= 0Bvv                                                         (3.2.55) 

Let us consider the conservative system associated with the real system. It is governed by the 

equation of motion + =Mq Kq 0&&  and its modal vectors are vr and Ωor. 

Let us try as in the undamped case , to solve the system of equations (3.2.53) through modal 

vectors vr of the associated conservative system 

                                                   ∑=
r

rvq t
r

reC λ                                                         (3.2.56) 

Substituting (3.2.56) into (3.2.53) we get 

                          0vKvBvM =++ ∑∑∑ r
r

t
rr

t
r

r
rr

r

t
rr

rrr eCeCeC λλλ λλ2   

Let we multiply this equation from left hand side by T
rv  and use the conditions of 

orthogonality: 

             ( )2 0 1,2,...rtT T T
r r r r r r r r rC e for r nλλ λ+ + = =v Mv v Bv v Kv                           (3.2.57) 

Because the solution must be accepted for any time, the expression in brackets has to be zero.  

We use the previous notation  

                                              r
T
ryrr

T
ryr km KvvMvv == ;  

and  the damping matrix B describe by (3.2.54) we obtain n independent equations 

                      ),...,2,1(0)(2 nrkkmm yrryryrryr ==+++ λβαλ                                  (3.2.58) 

The roots of (3.2.58) are 

                                                 rrr iΩ±−= δλ 2,1)(                                                      (3.2.59) 

In (3.2.59) means 

                                               
yr

yryr
r m

km
2

βα
δ

+
=                                                          (3.2.60) 
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rrr

m
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=Ω

−Ω=Ω
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22
0 δ

                                                           (3.2.61) 

The general solution of (3.2.56)  is 

                                      ∑ += r
t

r
t

r
rr eCeC vq )( 21

21
λλ                                                  (3.2.62) 

If r0Ω > δr the roots λr will be a complex values and the resulting motion will be periodic  

               
         

( )∑ Ω+Ω= −

r
rrrr

t tBtAe r
rvq sincosδ                                                 (3.2.63) 
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                        ∑ +Ω= −

r
rr

t
r teC r

rvq )sin( ϕδ                                                               (3.2.64)               

1 2, ; , ; ,r r r r r rC C A B or C ϕ
                 

are integration constants determined from initial conditions ( 0 0 0,= =q q q q& & ) 

The proportional coefficients α and β are determined experimentally. From (3.2.60) we get 

                                         







Ω+

Ω
= r

r
rb βα

02
1  

Because there are two unknowns two measurements must be made by two different natural 

frequencies. Because the higher modes are difficult to excite we use other procedure. From 

practice we know that extreme damping is by lowest frequency we put the derivative of the 

last equation to zero. 

                                   0
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Now we can use this equation and one measurement by first natural frequency.  

The coefficients are given by 

                                                

r

r

rr

b
b

0

0

Ω
=

Ω=

β

α
                                                                  (3.2.65) 

 
3.2.4 Forced response of mechanical systems 
 
In this case we suppose the equation of motion of the mechanical system 

                                   )(tQKqqBqM =++ &&&                                                            (3.2.66) 

We have a differential equation of second order with right said. The solution of it is composed  

of the homogenous  solution and a particular one 

                                        ph qqq +=  

The homogenous part is given by (3.2.62), (3.2.63) or (3.2.64). 

The particular solution depends of the character of the excited force.  

 

3.2.4.1 The force is harmonic 

 

By this excitation it is possible to solve many practical cases. We suppose the excited vector 

of the force 

                                               tiet ω
0)( QQ =  
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With respect to the harmonic right hand side of the equation we choose the particular solution 

                                                    i t
p e ω=q s% %  

After substituting in (3.2.66) we get 

                                      ( ) 0
2 ~ QsBMK =+− ωω i  

From this equation it is possible to get the complex vector s%  

                                  ( ) 0
12~ QBMKs −

+−= ωω i                                                    (3.2.67) 

It is necessary to keep in mind that we have to obtain the inverse of a complex matrix. 

The inversion of it is  

                           ( )
)(
)(12

ω
ωωω

∆
=+−

− GBMK i                                                         (3.2.68) 

Here is 
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ωωω
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iadj

+−=∆
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The real part of the response are given 

                            { }( ) { }( )22
0

~Im~Re rrr sss +=    for r = 1, 2, …,n                           (3.2.69) 

The phase is given by 

                               
{ }
{ }r

r
pr s

sarctg ~Re

~Im
=ϕ           for r = 1, 2, …,n                             (3.2.70) 

The general solution can be written 

           )]sin()sin([ pr
r

rr
t

r tteC r ϕωϕδ +++Ω= ∑ −
rr svq                                        (3.2.71) 

 
 
                     homogenous solution 

The integration constants Cr and ϕr are determined from the initial conditions. 

 

3.2.4.2 Exciting force is a general function of time 

 

Often the exciting force is a general function of time. The particular solution of the equation 

(3.2.66) is supposed in the form 

                                             )(tdr
r

p ∑= rvq                                                           (3.2.72) 
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vr is the modal vector of the free not-damped vibration. dr(t) is till now unknown function of 

time. Substituting (3.2.72) into (3.2.66) we get 

                        )()()()( ttdtdtd
r r

rr
r

r QvKvBvM rrr =++ ∑ ∑∑ &&&  

Multiplying  this equation by T
rv  and using the conditions of orthogonality we obtain 

           nrprottdtdtd T
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T
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T
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T
r ,...,2,1)()()()( ==++ QvKvvBvvMvv &&&  

We divide the equation by the main mass r
T
ryrm Mvv= and denote 
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By this procedure we got n independent equations 

                       nrprottdtdtd
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T
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rrrrr ,...,2,1)()()(2)( 2
0 ==Ω++
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QvT

r&&& δ               (3.2.75) 

This solution of this equation is given by the Duhamel integral  
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= −−
t

r
t
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r dte

m
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)( )(sin)()( τττ τδQvT
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We substitute this solution into (3.2.72) and we obtain the particular solution of (3.2.66) 

                                ∑ ∫ −Ω
Ω

= −− τττ τδ dte r
t

r
T
rr

T
rr r )(sin)( )(Q

Mvv
vvqp                    (3.2.76) 

In this equation it is 

                                 22
0 rrr δ−Ω=Ω  

The shown solution is valid also for the cases when α = 0 or β = 0 or α = β = 0. This solution 

is useful when if the matrix of dynamic stiffness is singular and the inverse of it is not 

possible. Equation (3.2.76) is possible to use also for a harmonic exciting force. In such a case 

we substitute in (3.2.75) tiet ω
0)( QQ =  and the solution is supposed by 

                            )sin(0 prrr tsd ϕω −=  

We substitute into (3.2.72): 

                            ∑ −=
r

rr ts )sin(0 ϕωrp vq                                                    (3.2.77) 

The amplitude of harmonic response and phase is given by expressions 
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                              22
0

2
ω

ωδϕ
−Ω

=
r

r
r arctg                                                           (3.2.79) 

When we use the computer the solution of response is very simple and comfortable even for  

the systems with extremely high number of degrees, 

 
 
3.3 Vibrations of Continuous systems  
 
So far, vibrating systems have been regarded as an assembly of discretized elements, namely 

rigid elements with inertia as their only physical property, linked together by springs and or 

dissipative elements, characterized by their stiffness and their damping coefficients but with 

no inertia 

The number of degrees of freedom of a discrete systems is fixed by its number of masses and 

its mathematical model consists of a set of n coupled ordinary differential equations. 

In practice, the representation of a physical system by a discrete model is usually an idealized 

view. In most cases, the main bodies, which compose a mechanical system are deformable, 

and the elastic elements which connect the main bodies has also their own inertia. Therefore 

each constituent of a system possesses simultaneously inertia, stiffness and damping 

properties. The mathematical model of a continuous system undergoing time dependent 

deformation used in elastodynamics is then relevant. 

In order to formulate the governing equations of a continuous system we will resort to the 

theory of continuum mechanics where the equations of motion are expressed in terms of 

displacement field together with the boundary conditions to be satisfied. The space 

coordinates x, y, z being continuous, the system so described possesses an infinity of degrees 

of freedom. 

In many cases, the specific geometry of the continuous bodies under investigation allows a 

simplified formulation of the equations of motion in terms of one or two displacement 

components, themselves functions of one or two space variables and time. Such situations, 

which are often encountered in practice, will be treated after a general presentation  of the 

dynamic of continuous has been made. 
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x  

3.3.1 The longitudinal vibrations of bar 

 

A simple element in technical practice is a bar. His longitudinal dimension is much more 

greater as the transverse size. The next derivation are made on the bases of following 

suppositions: 

1. The bar is axial symmetric 

2. Sections perpendicular to the axis remain plane and perpendicular to the axis after the 

deformation 

 

 

 

 

3. The transverse deformations are neglected 

 

From the bar we take out an element of length dx (Fig. 3.11) 

We write the equation of motion of the element 

                            2

2 ),(
t

txuAdxNdx
x
NN

∂
∂

=−
∂
∂

+ ρ                                             (3.3.1) 

The force in the bar is proportional to the strain  

                                 A
x

txuEAEAN
∂

∂
===

),(εσ  

E is the modulus of elasticity in tension (Yang modulus), ρ is the density of the material of the 

bar, A is the cross section area of the bar. 

If we express N the partial differential equation of motion is 

             

                                                                                   x 

 

                         x              dx 

                                         u                              dx
x
uu

∂
∂

+     

                        N                                             dx
x
NN

∂
∂

+  

 

                                        Fig. 3.11 
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∂                                                       (3.3.2) 

We used the notation 

                         
ρ
Ec =                                                                               (3.3.3) 

c represents the velocity of longitudinal waves propagation in the bar or by other words it is 

the velocity of sound in the bar. 

The partial differential equation  we transform on an ordinary differential equation 

introducing the product of two functions – one is a function of a position and the other one is 

a function of time 

                       )()(),( tTxUtxu =  

Substituting this equation in (3.3.2) the partial differential equation changes in the ordinary 

one: 

                                 T
dx

UdcU
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Td
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2
2

2

2

=  

We separate the variables and put each side to the same value 
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 Two equations will be obtained 

                               00 2

2
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2
2
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=
Ω

+=Ω+ U
cdx

UdaT
dt

Td  

Both equations represents the harmonic solution 

                             tDtDtT 0201 sincos)( Ω+Ω=                                                         (3.3.4) 

                  pxCpxCxU sincos)( 21 +=                                                           (3.3.5) 

                    
ρ

ρ Epresp
Ec

p =ΩΩ=
Ω

= 00
0 .                                                 (3.3.6) 

Integration constants C1. C2   will be obtained from boundary conditions  and constants  

D1,  D2 from initial conditions. The next solution depends on the arrangement of the bar. 

 

The bar built in both sides (Fig. 3.12) 

 

The boundary conditions are: for x = 0   U(0) = 0. Substituting in  (3.3.5) we get C1 = 0. 

On the other side x = l is U(l) = 0 and from (3.3.5) will be 
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                   X 
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X 
 
 
                          X 
                                             L 
 

                           C2 sin pl = 0 

To fulfil this equation must be valid  

   ∞== ,....,2,1npronpl π  

Substituting this expression we obtain from (3.3.6) the circular natural frequency 

                                                                            

 

ρ
π E
l

n
n =Ω0                                       (3.3.7) 

The deformation of the bar will be given by 

the formula 

0 0
1

( , ) ( cos sin )sinn n
n

nu x t A t B t x
l
π∞

=

= Ω + Ω∑  

 
 
 

 
The bar on one end built in and on the other end free  (Fig. 3.13) 

 
 
 
 
 
 
 
 
                   
 
 

At the built in end the boundary condition gives  x = 0  → U(0) = 0. From this condition we 

get C1 = 0; 

At the free end the strain is  equal to zero: 

                              0cos)(
2 == plC

dx
ldU

p  

In this case it must be for non-trivial solution ( 2 0C ≠ ) 

                                ,....
2

)12(,...,
2
3,

2
πππ

−= npl  

 

Substituting in (3.3.6) we get 

  
 
 
 
 
 
                           
 
 
 
 

   
                                                                        x 
 
 
 
                                
 
                                                                      

Fig. 3.12 

x 
l

x 

Fig.3.13

l
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ρ

π E
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n
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)12(
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=
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The bar on both sides free 

 

In this case the boundary condition is 

x = 0 → 00)0(
2 == Codkud

dx
dU  

For x = l  → 0cos)(
1 =−= plpC

dx
ldU  

For non-trivial solution is 

πnpl =  for n = 1,2,…,∞ 

The natural circular frequency will be 

                     
ρ

π E
l

n
n =Ω0                                                                                  (3.3.9) 

 

 

The bar on one side built in and on the other side loaded by point mass (Fig.3.14) 

 

The boundary condition in the built in end is  

x = 0 → U(0) = 0 → C1 = 0 

The equation of motion has the form 

)sincos(sin),( 02012 tDtDpxCtxu Ω+Ω=  

The force on the free end must be 
2

2 1 0 2 02

( , ) ( , ) cos ( cos sin )u x t u x tN m EA EAC p px D t D t
t x

∂ ∂
− = = − = − Ω + Ω

∂ ∂
Using equation of motion it will be 

2
0cos sinEAp pl m pl= Ω  

From here we get 
2
0

p

m mcotgpl pl
EAp m

Ω
= =  

For 1
p

m
m

=  we can obtain ,....
2

3,....,5,4,3,456,1 ππππ npl =  and then the natural circular 

frequency 

 

Fig. 
3 14Fig. 3.14
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                                                        F0sinωt 
 
 
        X, u                                                                      x 
 
                            l                                                        uz = u0sinωt 
 
 
 
                        Obr. 5.6                                                   Obr. 5.7             

   
ρ

π E
l
n

n 2
3

0 =Ω  

 
Forced vibrations of a bar 
 
We suppose a bar on one end built in an o the other side loaded by harmonic force (Fig.3.15) 

At the fixed end of the bar the boundary condition is  

x = 0 U(0) = 0 → C1=0 

The equation of motion will be 

                              2( , ) sin sinu x t C px tω=  

 

At the free end the boundary condition is 

                                   x = l     0
( , ) sinu x tEA F t
x

ω∂
=

∂
 

After substituting 

                                          2 0cosEAC p pl F=  

From this equation it will be determined the integration constant 

                                          0
2 cos

FC
EAp pl

=  

Equation of motion of general section of the bar is 

                               ( , ) sin sin
cos
Fu x t px t

WAp pl
ω=  

After substituting /p cω=  we get 

                              0( , ) sin sin
cos

Fu x t x t
cEA l

c c

ω ωω ω=                                               (3.3.10) 

 

Fig. 3.15                                                                     Fig. 3.16 
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The resonance arises if the denominator of (3.3.10) will be zero, also for  

                                       3, ,..., (2 1) ,....
2 2 2

l n
c
ω π ππ= −  

The displacement of the free end is given by the equation 

                                       0( , ) sinFu l t tg l t
cEA

c

ω ωω=  

The free bar excited kinematicaly  

 

We consider the bar at the Fig. 3.16. His left side is excited kinematicaly by a harmonic 

function 0 sinzu u tω= . The solution is considered by the equation 

           1 2( , ) ( sin )sinu x t C cospx C px tω= +  

At the left hand side is the boundary condition 

    1 0 1 00 sin sinx C t u t C uω ω= → = → =  

At the right hand side is does not act a force, therefore the stress and also the strain are equal 

to zero: 

                          0 2
( , ) sin cos 0

x l

u x t u l pl C p pl
x =

∂  = + = ∂ 
 

From here we obtain 

                                                 2 0C u tgpl=  

The equation of motion of a bar will be 

                                 0 0( , ) ( cos sin )sinu x t u px u tgpl px tω= +  

This equation is possible form on the following expression 

                            0

cos 1
( ) sin

cos

xl
c lu xt u t

l
c

ω

ωω

 − 
 =  

From this shape is good seen the condition for resonance - cos 0l
c
ω

=  and so 

                                            ,3 ,..., (2 1)
2 2 2

l n
c
ω π π π

= −  
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             Obr. 5.7 

3.3.2 Torque vibrations of shafts 

 

A shaft of circular cross section is a very used element in machinery. By solution of his 

vibration we use the linear theory of elasticity. We consider prismatic shaft of circular cross 

section from which we cut out an element (3.17) and write its equation of motion 

 

            2
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t
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x

M
p ∂

∂
=

∂
∂ ϕρ  

       The torque is given by known expression from   

       Strength of material  

              pM GJ
x
ϕ∂

=
∂

 

       G is the modulus of shear, Jp is the quadratic polar moment of a cross section of the shaft. 

Using the expression for torque we get the equation of motion 
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2
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t

x t x tc
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ϕ ϕ∂ ∂
=

∂ ∂
                                                      (3.3.11) 

We denoted the velocity of shear waves propagation in the shaft: 

                                                   
ρ
Gct =                                                                   (3.3.12) 

Equation of motion (3.3.11) is similar to (3.3.2). Therefore the solution of the equation will be 

similar: 

                             )sincos)(sincos(),( 2121 ttpxpxtx ΩΨ+ΩΨΦ+Φ=ϕ                (3.3.13) 

In this expression we used 

                                                        
Gc

p
t

ρ
Ω=

Ω
=                                                  (3.3.14) 

The determination of integration constants Φ1, Φ2, Ψ1 a Ψ2 will be provided from boundary 

and initial conditions. 

 

3.3.3 Bending vibrations of beams 

 

Beams are such elements of a structure, which can be loaded not only by axial forces but also 

by transversal load. 

By derivation of equations of motion we suppose that 

 

M+dM

Fig. 3.17 
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                     osa nedeformovaného nosníku         x 
 
 
                                                                       q(x,t) 
 
 
           y 
           w               
                                      dx 
                           M Q 
                  w                             q(x,t) 
 
                                    

Q+dQ M+dM

• The beam is straight 

• Transverse deformations are small 

• The vibration is in the plane given by an axis of the beam and one of the principle axis 

of quadratic moment of the cross section 

• The planes perpendicular to the longitudinal axis of the beam remain plane and 

perpendicular to the axis by vibration 

• Small displacements of shaft elements in the longitudinal direction are neglected 

By the derivation of equations of motion we use Fig.3.18 

The element makes a general plane motion. It is necessary to write the equation of motion 

of the translation 
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From here we get 
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x
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∂
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∂
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The equation of motion of rotation of the element about the mass centre is 

                                              
2
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ψ∂ ∂
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∂ ∂
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Obr. 5

The axis of the unloaded beam

Fig. 3.18
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In these equation is ρ the density of the material of the beam, A the cross section area, Q 

the shearing force, M the bending moment,  w(x,t) the deflection of the beam, Iz the 

moment of inertia to the z – axis going through the mass centre, external continuous load 

on the unit length of the beam. 

The rotation of the element is composed of the rotation due to the shear and bending 

                                                γψ +=
∂

∂
x

txw ),(                                                    (3.3.17) 

ψis the rotation of the element (the slope of the deformed axis of the beam) given by 

known expression 

                                            M
x

EJ z −=
∂
∂ψ                                                          (3.3.18) 

Jz is the quadratic moment of the cross section to the axis z. γ is the shear of the cross 

section 

                                                 Q
AG
κγ =                                                             (3.3.19) 

κ is the coefficient of shear deformation. From (3.3.17) we obtain 
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∂
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=
x
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After the first derivative with respect to x  
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The bending moment from (3.3.18) will be 
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From (3.3.16) we get 
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Substituting this equation in (3.3.15) and using the equation 

                                   2
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t
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∂
∂ ρκκγ  

we obtain the equation of motion of the vibrating beam 
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2 4 4 4 4

2 4 2 2 4 2 2 ( , )z z z

effect of rotation effect of shear
inertia

w w w w wA EJ I I EJ q x t
t x x t G t G x t

κρ κρρ ∂ ∂ ∂ ∂ ∂
+ − + − =

∂ ∂ ∂ ∂ ∂ ∂ ∂14243 1444442444443
                  (3.3.20) 

While the moment of inertia of the element Iz=(1/12)Aρdx3 is essentially then the other 

terms it may be neglected. The effect of shear is by ordinary beams very small and is also 

neglected. The equation (3.3.20) will be much more simple  
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x

txwEJ
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∂ρ                                     (3.3.21) 

For abbreviation of writing we will not use by moment of inertia and quadratic moment of 

the cross section the index z. 

 
3.3.3.1 The free vibrations of prismatic beam 

 

In this chapter we consider the external load q(x,t) = 0. 

he partial differential equation (3.3.21) we transfer to ordinary one by using 

                                     )().(),( tTxWtxw =                                                           (3.3.22)        

Then we use the notation 
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= is the velocity of bending wave propagation in the beam. After separation of 

variables (3.3.21) becomes the form 
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From here 
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and its solution gives 

                           tAtAtT Ω+Ω= sincos)( 21                                                       (3.3.24) 

The next equation obtained from (3.3.23) is 
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                      4 2244 Ω=Ω=Ω=
EJ

Apnebop ρηη                                        (3.3.25) 

and so 

                                    0)()( 4
4

4

=− xWp
dx

xWd                                                      (3.3.26) 

The solution of this equation is supposed in form 

                                   xBexW λ=)(  

When substituting the solution in (3.3.26) we obtain the characteristic equation 

                                  044 =− pλ  

The roots of this equation are 

                 ipippp −==−== 4321 ;;; λλλλ  

Using these roots we get the equation of motion 

                   pxBpxBpxBpxBxW cossincoshsinh)( 4321 +++=                       (3.3.27) 

Substituting in (3.3.22) the equations (3.3.24) and (3.3.27) 

)sincos)(cossincoshsinh(),( 214321 tAtApxBpxBpxBpxBtxw Ω+Ω+++=   (3.3.28) 

The general solution will be obtained by linear combination of all modes 
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                                                                                                                               (3.3.29) 

The integration constants B1, B2, B3, B4 which determines the shape of the vibrating beam 

we get from boundary conditions and the integration constants A1 and A2 from initial 

conditions. In order to be liable to determine the integration constants Krylov function are 

used, sometimes called Raylegh functions. These function are developed so, that one of 

this function is for zero equal to one and the other functions vanish. These form of its is 

following: 
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The next property is that its derivatives is possible obtain by cyclic exchange of the 

previous function 
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              (3.3.31) 

From (3.3.30) we see that for x = 0 is S(0) = 1 and T(0) = U(0) = V(0) = 0.  Using Krylov 

functions (3.3.27) we can write in the form 

                 )()()()()( 4321 pxVBpxUBpxTBpxSBxW +++=                           (3.3.32) 

In these expressions they occurs hyperbolic functions, which reach by greater arguments 

very large values. Therefore is introduced instead x the dimensionless value ξ = x/l. If l is 

the total length of the beam, ξ is in interval )1,0(∈ξ . When we use ξ some previous 

expressions will be changed 
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The equation (3.3.26) now is  
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For next solutions we introduce  
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The equation of motion is now 
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Its solution is 

                   )()()()()( 4321 λξλξλξλξξ VBUBTBSBW +++=  (3.3.35) 

Besides this equation we well need for the next solutions 
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the slope of deflection curve  
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The equation of bending moment 

 [ ])()()()(
)(
)()( 43212

2

λξλξλξλξλ
ξ
ξξ TBSBVBUB

l
EJ

T
MM +++−==  (3.3.37) 

The equation of shearing force 
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As an example we will solve the cantiliver beam shown in Fig.3.19. 

At the built in side the boundary conditions are x = ξ = 0 → W(0) = 0 and W´(0)=0. 

From (3.3.35) is B1 = 0 and from ((3.3.36) B2 = 0. From (3.3.37) and (3.3.38) we get 

                                                 
0)()(
0)()(

43

43

=+
=+

λλ
λλ

SBVB
TBSB

 

We received the system of two homogenous equations with unknown  constants B3 B4. For 

non-trivial solution must be the determinant of the system be zero: 
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Substituting for S(λ), T(λ) a V(λ) 

from (3.3.31) is obtained 

                                                                                                  0coshcos1 =+ λλ  

After numerical solution of this equation1) we obtain the roots 

    πλπλπλπλ )(;5003,2;4942,1;5968,0 2
1

321 −==== nn  

When we use these roots we determine from (3.3.34) the natural frequencies. Using some of 

λn it is possible get the mode of vibrating beam 

                                                 
1) It is possible to use the method of half step, method of secants, Newton´s method or mathematical sw MAPLE 
or MATLAB  
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When we use λn = (n- ½)π we  
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The shape of the modes is shown on Fig. 3.20 
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Fig. 3.20 



 70

For different modes there exists places with zero displacement during the all time of  

vibration. These places are called nodal point. Its number is N = n – 1, where n is the number 

of mode. By similar way it is possible to solve other  types of beams. The results are in 

Tab.3.3.1 

                         Tab. 3.3.1 The solution of basic types of beams. 

Type of beam 

boundary conditions 

Characteristic equation Roots of characteristic 
equation 

 
 
 
 
  W(0) = 0                        W(l) = 
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  M(0) = 0                         M(l) = 
0 

 
 
    0sinhsin =− λλ  

 
 
             πλ nn =  

 
 
 
 
   W(0) = 0                     M(l) = 0 
   W´(0) = 0                    Q(l) = 0 

 
 

0coshcos1 =−+ λλ  

 

  
πλ

πλπλ
)(

4942,1;5968,0

2
1

21

−=

==

nn

 

 
 
 
 
      W(0) = 0                  W(l) = 0 
      W´(0) = 0                 W´(l) =0 
 

 
 
 
  01coshcos =−λλ   

 
 
 
     πλ )( 2

1+= nn  

 
 
 
 
      W(0) = 0                  W(l) = 0  
      W´(0) = 0                 M(l) = 0 

 
 
   0=− λλ tghtg  

 
 
     πλ )( 4

1+= nn  
 

 
 
 
 
        M(0) = 0                M(0) = 0 
        Q(0) = 0                 Q(0) = 0  

 
 
  01coshcos =−λλ  

 
 
     πλ )( 2

1+= nn  

 
        

A
EJ

l
n

ρ
λ

2

2

0 =Ω  
 

 

 



 71

 
                                                                                              x1           
                                               1/∆                                                                           
∆        1/∆ 
 
 
 
 
            x1            ∆                                                                                                   
1/∆ 
                                                                                                          ∆ 
 

 
 
                                                                                   x1 
                                           1/∆                                                      ∆               1/∆ 
 
 
 
              x1         ∆                                                              ∆                           1/∆   

 

3.3.3.2 Bending vibration of beam excited by concentrated load 
 

Let we consider excitation by a concentrated force F acting at the distance x1.  When we want 

to use the equation (3.3.21) we consider the force continuously distributed on the length ∆ 

(Fig.3.21). The force is supposed as a harmonic function of time tFF ωsin1= . 

                         

                               Fig. 3.21                                                            Fig. 3.22 

 

Equation of motion will be    
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δ1(x) is the Dirac function with following values 

         1 1 1
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This expression has the advantage that (3.3.39) is valid in the whole length of the beam. The 

partial differential equation will be transferred on the ordinary one using the arrangement  

                                               txWtxw ωsin)(),( =  

Then will be 
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We use the notation 

 4 2ωρ
EJ

Ap =  

The previous equation can we write in the form 
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We got ordinary differential equation of 4th order with constant coefficients. Its solution 

consists of the homogenous solution and a particular one: 

                   )()()()()()( 4321 xpxVBpxUBpxTBpxSBxW Φ++++=  (3.3.41) 

The particular solution will be determined, by using Duhamel integral  
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In the case when the beam is loaded by external bending moment it is possible  to replace the 

moment by a couple and each of these distributed forces by its resultant . The Dirac function 

obtains the shape 

 

∆+><=

∆+≤≤∆+
∆

−=

∆+≤≤
∆

=

20)(

21)(

1)(

112

1122

1122

xxaxxprox

xxxprox

xxxprox

δ

δ

δ

 

Particular solution will express the equation 
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  (3.3.42) 

The last two members of the right hand side enter into the determination of the deflection of 

the beam  behind the place of action of external load. If on the beam the point mass is placed 

then the force F1 will be replaced by the expression 

 )( 1
2

1 xWmF Ω=  (3.3.43) 

When we use the dimensionless parameter ξ=x/l (3.3.43) gets the form 
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  (3.3.44) 

pl=λ  

  

 

3.3.3.3 The method of transfer matrices  
 

This method stay on the fact, that all needed parameters of the beam is possible to determine 

from the parameters on the beginning of the beam ( x = 0 or ξ = 0). From equations (3.3.35), 

  (3.3.36), (3.3.37) and (3.3.38) is possible to determine the integration constants: 

                 
2 3

1 2 3 42 3

(0) (0)(0); (0); ;l l M l QB W B W B B
EJ EJλ λ λ

′= = = − = −  

By using of these integration constants we determine the parameters in the section of the 

beam 
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(3.3.45) 

The last two terms in each of the previous equations are equal to zero for 1ξξ ≤ . The 

equations (3.3.45) is possible to write in matrix form. 

We define the status vector at the beginning of i section 

 [ ]TiQMWW −−′= ,,,is  

and the status vector on the end of the i section, which is also the status vector at the 

beginning of  i + 1 section 

 [ ]TiQMWW 1,,, ++ −−′=1is  

We define the transfer matrix Pi. By using of it we determine the status vector on the 

beginning of the I + 1 section   

                iii sPs =+1  (3.3.46) 

While the end of one section is ever the beginning point of the next section it is define the 

value on the end of n + 1 section 

 0021 ..... sPPPPs 1n −−+ = nnn  (3.3.47) 

or  

         0,01 sPs nn =+  (3.3.48) 

The resultant transfer matrix is given by the product of transfer matrices all sections 
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The transfer matrix is square of order 4, because the status vector is also of order 4. By 

multiplication of transfer matrices arise always the square matrix of order 4. This is advantage 

of this method and the calculation is possible by using PC. The next advantage is in the fact, 

that we can easy built the computational model of a set of beams with any support , with 

variable stiffness and cross section as well as statically indeterminate. The only disadvantage 

is, that by multiplication of many transfer matrices it can occur the numerical instability.  

By application, the set of beans is divided on sections, each with constant geometrical, mass, 

stiffness and force parameters. Any section may be arbitrary short and so define the section 

with concentrated force, concentrated moment, point mass, etc.  We show the transfer marices 

for some types of beam sections. 

Prismatic beam of length l (Fig. 3.23) 
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Fig. 3.23

 

 

     Fig. 3.24 
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Rigid mass point (Fig.3.24) 

The rigid mass point changes the shear force of the value Wmam 2Ω−= . The transfer matrix 

of this case will be 
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Rigid mass with moment of inertia 

This case is similar to the case shown in Fig.3.24 but in position i + 1 will change also the 

moment of the value IW ′Ω− 2 . The transfer matrix is 
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Elastic support with stiffness coefficient k (Fig. 3.25) 

 
At the end of the section will be changes 

the shear force of the value kW 

 

1 0 0 0
0 1 0 0
0 1 0
0 0 0 1

i κ

 
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P                        (3.3.52) 

 

 

 

 

 

The elastic hinge with the stiffness coefficient  κ 

In the section will the bending moment of the value Wκ ′− : 

 
 
 

           k 

       i         i+1 

  Fig. 3.25 
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 

P   (3.3.53) 

 

As example we solve a cantilever beam of variable cross section (Fig.3.26), which can be a 

model of turbine blade. We divide the beam on prismatic sections. The lengths li of each 

section may be different. The transfer matrix of each section is given by the equation (3.3.50) 

The length li, value λI, quadratic moment of the cross section Ji. Yang modulus E and density 

ρ are in all sections equal. The resultant transfer matrix will be determined from (3.349). We 

consider the boundary conditions: at fixed end W(0) = 0, W´(O) = 0. At the free end M = 0 a                       

                                                     Q = 0. We will write symbolic  

   

11 12 13 144 1

21 22 23 244 1

31 32 33 34 0

41 42 43 44 0

0
0

0
0

p p p pW
p p p pW
p p p p M
p p p p Q

+

+

    
    ′      =
     −
     −        

 

    pij are elements of the resultant transfer matrix. The matrix     

    notation represent 4 equations, which will have the form 

   

4 1 13 0 14 0

4 1 23 0 24 0

33 0 34 0

43 0 44 0

0 0 0
0 0 0

0 0 0 0
0 0 0 0

W p M p Q
W p M p Q

p M p Q
p M p Q

+

+

+ + + + =
′+ + + + =

+ + + + =
+ + + + =

 

The system of equations is homogenous. Therefore for the non-trivial solution must be the 

determinant of the system equal to zero: Because the 3rd column contain only 0 it must not be 

taken into account and the determinant will be 

                                                       

13 14

23 24

33 34

43 44

1 0
0 1

0
0 0
0 0

p p
p p
p p
p p

=  

After evaluation of the determinant we get    

                          33 44 34 43 0p p p p− =  

  

Fig.3.26 
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By the solution of this equation we get the natural circular frequency of the beam and after 

that the modes of vibrations. 

 

3.3.3.4 The influence of rotational inertia and the shear 

 

As far all solutions were provided by using of the simplified equation of motion (3.3.21).   

The differences between this solution and the exact solution given by (3.3.20) shows the Fig. 

3.27. On the vertical axis is the ratio of the exact solution to the simplified solution. On the 

horizontal axis is the ratio of the length of the beam to the radius of the quadratic moment of 

the cross section Jj
A

= .. From the figure is seen that greater differences occur by very short 

and high beams. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                                      

                                                                          Fig. 3.27 
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∂
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2

2( )w wN dx
x x

∂ ∂
+

∂ ∂
                                     

w
x

∂
∂

 

3.3.4 Vibration of membranes 

 

A membrane is a skin which is stretched with a tension and which has no bending stiffness 

whatever. It is considered as two-dimensional mechanical system. 

Let we consider that the membrane is stretched in all direction by relative tension N (force per 

unit length). The relative mass of membrane is q (mass per unit surface ). The Fig. 3.28 is 

shown the cutting through an element of a membrane. 

Similar cutting is possible imagine 

to imagine by the plane yz.  

 

 

 

 

 

 

 

 

 

 

We can write the equation of motion  

2 2 2

2 2 2

w w w w w w wN dx dy N dy dx N dy x qdxdy
x x y y x y t

     ∂ ∂ ∂ ∂ ∂ ∂ ∂
+ + + − − + =     ∂ ∂ ∂ ∂ ∂ ∂ ∂    

  

After arrangement of this equation e get 

                                            
2 2 2

2 2 2

w w wN q
x y t

 ∂ ∂ ∂
+ = ∂ ∂ ∂ 

  (3.3.54) 

It is possible to use Laplace operator  
2 2

2
2 2x y

∂ ∂
∇ = +

∂ ∂
 and we can write (3.3.54) in the form 

 
2

2
2

( , , )( , , ) 0w x y tN w x y t q
t

∂
∇ − =

∂
 (3.3.55) 

We suppose harmonic vibration 

 
 
 
 
 
 
 
 
 
 
 
 
          
 
 
                                                                       

y 
 
z     w 

dx 

Fig. 3.28 

x

2

2

w w
x x

∂ ∂
+

∂ ∂
2

2

w w dx
x x

∂ ∂
+

∂ ∂

2

2( )w wN dx
x x

∂ ∂
+

∂ ∂
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 0                                                             
x                                                       x 
 

 ( , , ) ( , )sinw x y t W x y t= Ω  

After substituting in (3.3.55) 

  

 2 2( , ) ( , ) 0q W x y N W x yΩ + ∇ =   (3.3.56) 

The solution of this equation depends on the boundary conditions. 

 

5.3.4.1 Rectangular membrane 
 

Let we consider that the membrane is created by axes x, y and the straight lines parallel with 

them (x  = l, y = b) Fig. 3.29 

.On the circumference of the membrane the 

deflection are zero 

(0, ) 0; ( ,0) 0; ( , ) 0; ( , ) 0w y w x w l y w x b= = = =
We chose the solution that suit to these 

boundary conditions: 

, ( , ) sin sini j
i x j yw x y C

l b
π π

=   (i,j=1,2,..,∞) 

The second derivatives of these equations wit respect to x and y will be 

2 2 2 2 2

2 2 2

2 2 2 2 2

2 2 2

sin sin

sin sin

w i i x j y i w
x l l b l
w j i x j y j w

y b l b b

π π π π

π π π π

∂
= − = −

∂
∂

= − = −
∂

 

After substituting in (3.3.56) we get 

                                        
2 2 2 2

2
, 2 2 0i j

i jq N w
l b
π π  

Ω − + =  
  

 

The circular natural frequencies are calculated from this equation 

 
2 2

2 2
, 2 2 , 1, 2,...,i j

N i j for i j
q l b

π
 

Ω = + = ∞ 
 

    (3.3.57) 

The general solution is  

                 
 
    
 
                                                         b 
                
     
 
                        l 
 
   y 
                          Fig . 3.29                                    
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  ( ), , , ,
1 1

( , , ) sin sin cos sini j i j i j i j
i j

i x j yw x y t A t B t
l b

π π∞ ∞

= =

= Ω + Ω∑∑  (3.3.58) 

or 

   ( ), , ,
1 0

( , , ) sin sin sini j i j i j
i j

i x j yw x y t C t
l b

π π ϕ
∞ ∞

= =

= Ω +∑∑  (3.3.59) 

By vibration of membranes are important the nodal lines – the places in which the 

displacement are in any time equal to zero. From (3.3.58) or (3.3.59) that it will be if 

                                           

2 1, ,....,

2 1, ,....,

l l ix l
i i i
b b jy b
j j j

−
=

−
=

 

The nodal lines divides the membrane i*j same parts (Fig.3.30) 

.The nodal lines have not to be only a lines parallel to sides of a membrane. 

Let we consider a square membrane (b = l) and suppose the mode of vibration  i = 1, j = 2. 

(3.3.59) will be 

2 2( , ) sin( )sin( ) sin( )sin( ) sin( ) 0ij ijw x t A x y B x y t
l l l l
π π π π ϕ = + Ω + = 

 
 

 The nodal lines does not depend on time. After arrangement of this equation we get 

                             sin sin cos cos 0x y x y
l l l l
π π π πλ + = 

 
 

where is                   B
A

λ =  

This condition is fulfilled  if 

 

 

 
 
 
 
 

   i = 1,  j = 1                       i = 2,  j = 1                    i = 1,  j = 2                   i 
= 3,  j = 2 
 

      i=1, j=1                   i=2, j=1                    i=1, j=2                    i=3, j=2 
 
                                                        Fig. 3.30 
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  y                                                      y                                                 y 
 
 
 
 
 
 
                                          x                                               x                                   
x 

   

sin 0, . sin 0

cos cos 0

x resp y
l l

or

x y
l l

π π

π πλ

= =

+ =

 

The first condition gives the nodal lines parallel to sides of the membrane, the results of the 

second condition depend on λ. If  λ = -1 the equation of the line is y = x (Fig.3.31a), if  = 1 

the equation of the line is y = -x (Fig.3.31b).  If λ = -2 the shape of nodal line is given by the 

equation cos 2cosx y
l l

π π
=  (Fig.3.31c). 

3.3.4.2 Circular membranes  

 

We consider a circular membrane of radius R. It is advantageous to use polar coordinates 

 
cos
sin

x r
y r

ϑ
ϑ

=
=

 

The Laplace operator has in polar coordinates the form 

 
2 2

2
2 2 2

1 1
r r r r ϑ

∂ ∂ ∂
∇ = + +

∂ ∂ ∂
 

The equation of motion (3.3.55) in polar coordinates is 

 
2 2 2

2 2 2 2

1 1 ( , , )( , , ) 0w r tN w r t q
r r r r t

ϑϑ
ϑ

 ∂ ∂ ∂ ∂
+ + − = ∂ ∂ ∂ ∂ 

 (3.3.60) 

We divide this equation by q and use  

            N
q

ν =  

 

 

                                  x                                        x                                       x 
               a)                                          b)                                       c) 

Fig. 3.31

y y
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(3.3.60) changes to 

                       
2 2 2

2
2 2 2 2

( , , ) 1 1 ( , , )w r t w r t
t r r r r

ϑ ν ϑ
ϑ

 ∂ ∂ ∂ ∂
= + + ∂ ∂ ∂ ∂ 

 

We transform this partial differential equation to an ordinary one using for deflection 

following expression 

 ( , , ) ( ) ( ) ( )w r t r r t tϑ ϑ ϑ=  

The ordinary differential equation is 

 
2 2 2 2 2

2 2 2 2

1 1d t d r dr d
t dt r dr r dr r d

ν ν ϑ
ϑ ϑ

 
= + + 

 
 (3.3.61) 

Because the right hand side of the equation is independent must be also the left hand side time 

independent. We put both sides of (3.3.61) to -Ω0
2. Then it is 

 
2

2
02 0d t t

dt
+ Ω =  

We obtained the differential equation of harmonic motion 

 0 0cos sint C t D t= Ω + Ω  

In (3.3.61) must be for axial symmetrical membrane the term 

 
2

2
2

1 d n
d

ϑ
ϑ ϑ

= −  

constant and by its solution we get 

 cos sinA n B nϑ ϑ ϑ= +  

Substituting this value in (3.3.61) we obtain 

 
2 2 2 2

2
0 2 2

1d r dr n
r dr r dr r

ν ν 
−Ω = + − 

 
 

When we use 

                0k
ν
Ω

=  

 
2

2 2 2 2
2 ( ) 0d r drr r k r n r

dr dr
+ + − =  
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This equation is known as Bessel equation and its solution is 

 ( ) ( )n nr EJ kr FY kr= +  

Here E, F  are constants and Jn(kr) and Yn(kr) are Bessel function of first an second art. 

The deformation of circular membrane is given by the expression 

( ) ( ) ( )0 0cos sin cos sin ( ) ( )n nw A n B n C t D t EJ kr FY krϑ ϑ= + Ω + Ω +  (3.3.62) 

While the Bessel function Yn(0) = ∞ F = 0 and (3.3.62) obtains the form 

                  ( ) ( )0 0cos sin cos sin ( )nw A n B n C t D t EJ krϑ ϑ= + Ω + Ω  (3.3.63) 

If the vibration is symmetric to the axis of the membrane n = 0 and (3.3.63) is possible to 

simplifies  

                                  ( )0 0cos sin ( )nw C t D t J kr= Ω + Ω  

The Bessel function has the value 

               ( ) ( )
( )

( )
( ) ( )

2 41 1 1
2 2 2( ) 1

! 1 1 1.2. 1 2

n

n

x x x
J x

n n n n

 
= − + − ⋅⋅⋅ 

+ + +  
 

From here we obtain 

 

2 41
2

0 2

3 51 1
2 2

1 2

( )1( ) 1
2 2
( ) ( )1( )

2 2 2 3

xJ x x

x xJ x x

 = − + + ⋅⋅⋅ 
 

= − + − ⋅⋅⋅
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                    Tab. 3.3.2 Natural frequencies and nodal lines of circular membrane 

Ω0m                    Nodal lines 
2, 405 N

R q
 

    n = 0 
    m = 1 

 
                                              Circumference 
                                              of the circle 
 
 
 
 

3,832 N
R q

 
    n = 1 
    m = 1 

 
 
 
 
 
 

5,136 N
R q

 
    n = 2 
    m = 1 

 
 
 
 
 
 

6,380 N
R q

 
    n = 3 
    m = 1 

 
 
 
 
 
 

7,016 N
R q

 
    n = 1 
    m = 2 

 
 
 
 
 
 

 

If on the beginning the membrane is in quietness the constant D = 0 and the solution obtains 

the form 

                                         ( ) ( )0 0
1

cosm m
m

w C t J kr
∞

=

= Ω∑  (3.3.64) 

The vibration will be periodic with period 
0

2

m

T π
=

Ω
 and natural circular frequency is 

 ( )0 0
1

m m
N J k R

R q
Ω =   (3.3.65) 

The nodal lines are obtained from the condition w = 0. Some cases shows the Tab.3.3.2 
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                   Qx                      My 
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      Mx                                                           xyM

xy xM dx∂
∂+  

                                  
                                                         xM

x xM dx∂
∂+     

                                               xQ
x xQ dx∂

∂+  

                        yQ
y yQ dy∂

∂+  

         Myx
yx yM dy∂

∂+     

yM
y yM dy∂

∂+

3.3.5 Bending vibrations of thin plates  
 
The objective of this section is to introduce the concept of the solution of thin plates and to 

analyze their free vibration behaviour.   

The assumptions adopted generalize to two dimensional object are: 

1. The plane is thin with thickness h and possesses a mean plane. The external layers of 

the plane are the planes 1
2z h= ±  

2. Only the transverse displacement is considered 

3. The stress zσ in the transverse direction is zero. Indeed, it must vanish on the external 

layers and, since the plane is thin, it is natural to assume that it vanishes for all z 

4. The cross section initially normal to the mean plane, remain plane and orthogonal to it, 

implying that the transverse shear strain is neglected 

5. The normal stresses in the mean plane are zero 

Let we consider an element of the plate dimensions dx, dy and thickness h loaded according 

the Fig. 3.32 

          
 
 
 
 
All forces and moments are considered relative to the unit area. 

The equation of transverse motion of the element describes the expression 

  
2

2

( , , )yx QQ w x y tdxdy dxdy hdxdy
x y t

ρ
∂∂ ∂

+ =
∂ ∂ ∂

 

  

Fig. 3.32 
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from which we get 

                                         

                                     
2

2

( , , )yx QQ w x y th
x y t

ρ
∂∂ ∂

+ =
∂ ∂ ∂

 (3.3.66) 

Equation of motion of rotation about axis x is 

         
2

3
2

1 ( )
12

y xy x
y

x

M M
dxdy dxdy Q dxdy h dx dy

y t
ϕρ

∂ ∂ ∂
− − =

∂ ∂ ∂
 

The order of  term on the right hand side of the equation is twice smaller and we neglect it. 

                                       0y xy
y

M M
Q

y x
∂ ∂

− − =
∂ ∂

 (3.3.67) 

By similar way we obtain equation of rotation about the axis y 

                                       0yxx
x

MM Q
x y

∂∂
− − =

∂ ∂
 (3.3.68) 

The internal moments and forces are described by expressions [5]: 

                                

( )

2 2

2 2

2 2

2 2

2

( , , ) ( , , )

( , , ) ( , , )

( , , )1

x

y

xy yx

w x y t w x y tM D
x y

w x y t w x y tM D
y x

w x y tM M D
x y

µ

µ

µ

 ∂ ∂
= − + ∂ ∂ 

 ∂ ∂
= − + ∂ ∂ 

∂
= − = −

∂ ∂

 (3.3.69)    

                                
3 3

3 2

( , , ) ( , , )(2 )x
w x y t w x y tQ

x x y
µ

 ∂ ∂
= − + − ∂ ∂ ∂ 

 

                               
3 3

3 2

( , , ) ( , , )(2 )y
w x y t w x y tQ D

y x y
µ

 ∂ ∂
= − + − ∂ ∂ ∂ 

 

D is the bending stiffness given by formula 

                                                         
3

212(1 )
EhD

µ
=

−
 (3.3.70) 

µ is Poisson number . Substituting (3.3.69) into (3.3.66), (3.3.67) and (3.3.68) we obtain after 

editing  

                   
2 2 2 2 2

2 2 2 2 2

( , , ) ( , , ) ( , , )w x y t w x y t h w x y t
x y x y D t

ρ  ∂ ∂ ∂ ∂ ∂
+ + = −  ∂ ∂ ∂ ∂ ∂  

  (3.3.71) 

When Laplace operator will be used then 
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                                                                                          x 
 
 
 
                                                                                 b 
 
 
 
 
 
                                          l 
 
            y 
 
 
 
                                               Fig. 3.33

                            
2

2 2 4
2

( , , )( , , ) ( , , ) h w x y tw x y t w x y t
D t
ρ ∂

∇ ∇ = ∇ = −
∂

 (3.3.72) 

Next solution of these equations depend on the form of a plate and on boundary conditions. 

 
3.3.5.1 Bending vibrations of rectangular plate 
 
Analytical solution of plate is possible only for some types of supports. The solution is 

possible always, when two opposite edges are hinged. The other edges may be supported 

arbitrary. Let we show the solution of some cases. 

 

Rectangular plate with all sides simply supported 

 

The schema is shown on the Fig. 3.33. The deflection of the plate will be composed of the 

term depending on the position x, y and a term depending on the time: 

                                                 ( , , ) ( , ) i tw x y t W x y e Ω=  

The mode of vibrations must satisfy equation (3.3.72). After substituting the previous term we 

get 

 

 
 
 
 
 

 
 

b 

l

y

x
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                                              4 2( , ) ( , )hW x y W x y
D
ρ

∇ = Ω  (3.3.73) 

  
The Laplace operator of 4th order is given by formula 

                          
4 4 4

4
4 2 2 4

( , ) ( , ) ( , )( , ) 2W x y W x y W x yW x y
x x y y

∂ ∂ ∂
∇ = + +

∂ ∂ ∂ ∂
 

The boundary conditions are: for x = 0 and x = l is W = 0;  
2 2

2 2 0x
W WM D
x y

µ
 ∂ ∂

= − + = ∂ ∂ 
 

                                                for y = 0 and y = b is W = 0; 
2 2

2 2 0y
W WM D
y x

µ
 ∂ ∂

= − + = ∂ ∂ 
 

For W(x,y) we choose such function which satisfied (3.3.73) as well as the boundary 

conditions  

    ( , ) sin sin 1,2,..., 1, 2,...,m nW x y C x y for m and n
l b
π π   = = ∞ = ∞   

   
 (3.3.74) 

We substitute (3.3.74) in (3.3.73) and get the natural circular frequency 

                                
2 2

2
, 2 2m n

m n D
l b h

π
ρ

 
Ω = + 

 
 (3.3.75) 

The deflection of plate will be given by linear combination of all solutions 

  ( ), , , ,
1 1

( , , ) cos sin sin sinm n m n m n m n
m n

m nw x y t A t B t x y
l b
π π∞ ∞

= =

= Ω + Ω∑∑  (3.3.76) 

or 

         ( ), , ,
1 1

( , , ) sin( ) sin sinm n m n m n
m n

m nw x y t C t x y
l b

π πϕ
∞ ∞

= =

= Ω +∑∑  (3.3.77) 

The nodal lines satisfied the condition w = 0: 

                    2 ( 1) 2 ( 1), ,..., , ,...,l l m l b b n bx a
m m m n n n

− −
=  

The nodal lines are in this case the same as by rectangular membrane. 

 

Rectangular plate on two sides hinged and on other sides fixed 

 

This case is shown in Fig 3.34. We consider the particular solution in the form 
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                                                                         x 
 
 
 
                                                                   b 
 
 
 
 
                              l 
 
   y 
 
 
 
 

                             ,( , ) ( ) sinm n
mW x y C X x y
b
π

=  (3.3.78) 

    Substituting (3.3.78) in (3.3.66) we obtain 

                                                         

4 2 2 2

4 2 2

4 4
2

,4

2

0m n

d X m d X
dx b dx

m h X
b D

π

π ρ

− +

 
+ − Ω = 

 

 (3.3.79) 

The solution is considered xX Aeλ=  and after substitution in (3.3.79) we obtain characteristic 

equation 

                                 
2 2 4 4

4 2 2
,2 42 0m n

m m h
b b D
π π ρλ λ

 
− + − Ω = 

 
 

From here         
2 2

2
1,2 ,2 m n

m h
b D
π ρλ = ± Ω   

   We plot on 

                                        

2 2

, 2

2 2

, 2

m n

m n

h mr
D b

h ms
D b

ρ π

ρ π

= Ω +

= Ω −

     

 
 
 
   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
              
                                               Fig. 3.34 
 
 
                                                                                    

 

x
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By using of these terms we can write 

                               1 2 3 4; ; ;r r is isλ λ λ λ= = − = = −  

These values we substitute in (3.3.79). The solution gives  

               1 2 3 4cosh sinh cos sinX A rx A rx A sx A sx= + + +  (3.3.80) 

The boundary conditions for supposed plate are 

0 : 0; 0dXx a x l X
dx

= = = = . From these boundary conditions we get:                  

                                1 3 2 40 0A A and A r A s+ = + =   

Equation (3.3.80) now will be 

    ( )1 2( ) cosh cos sinh sinrX x A rx sx A rx sx
s

 = − + − 
 

 

When x = l and denote R=rl and S=sl we obtain 

                       
( )

( )

1 2

1 2

cosh cos sinh sin 0

sinh sin cosh cos 0

RA R S A R S
S

SA R S A R S
R

 − + − = 
 

 + + − = 
 

 (3.3.81) 

We obtained two homogenous equations for A1 and A2. For non-trivial solution the 

determinant of the system must be zero. From this requirement we obtain 

                                    ( )
2 2

2 1 cosh cos sinh sin 0R SR S R S
RS
−

− + =  

From this equation we obtain the natural circular frequencies 

                                 
2 2 2 2

, 22 2m n
r s D R S D

h l hρ ρ
+ +

Ω = =  (3.3.82) 

 

Rectangular plate on three sides simply supported and on the forth side clamped  
 
 This case shoves the Fig. 3.35. The deformation gives the equations (3.3.78) and (3.3.79). 

The boundary conditions are  
   

   x = 0 → 
2

2

( )( ) 0 0d X xX x and
dx

= =  

From here the integrations constants are A1 = A3 = 0 and the equation (3.3.79) obtains the 

form 

                               2 4( ) sinh sinX x A rx A sx= +  
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                                                                         x 
 
 
 
                                                                   b 
 
 
 
 
                              l 
 
   y 
 
 
 
 Obr.5.2

At the clamped edge x = l → ( )( ) 0; 0dX lX l
dx

= =  and we obtain two equations 

2 4

2 4

sinh sin 0

cosh cos 0

A R A S
SA R A S
R

+ =

+ =
 

     
 
   

We use the condition of non-trivial solution and from the determinate of the system we get the 

solution  

                                      sinh cos cosh sin 0S R S R R S− =  

From this equation we determine the natural circular frequency 

                                              
2 2

2m
m D

b h
π

ρ
Ω =  

 

Rectangular plate on two opposite edges simply supported on two other  edges free 

 

Scheme of this case is shown on the Fig. 3.36.Determination of deflection will be calculated 

by using of equation (3.3.78). The boundary conditions we use at x = 0 and x = l. In these 

positions is valid 

                                           
(0, ) ( , ) 0

(0, ) ( , ) 0
x x

x x

M y M l y
Q y Q l y

= =
= =

 

                                                                 x 
 
 
 
 
 
 
 
 
 
      y 

Obr. 5.25 Fig. 3.35

l

b 
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                                                                         x 
 
 
 
                                                                   b 
 
 
 
 
                              l 
 
   y 
 
 
 
 

 
 
                                                                  x 
 
 
 
                                                      b 
 
 
 
                        l 
 
 
   y 

From (3.3.69) we obtain  

                               
2 2 2

, 2 2(2 ) sin 0m n
d X m mDC X y
dx b b

π πµ
 

− − − = 
 

 

                             
3 2 2

, 3 2(2 ) sin 0m n
d X dX m mDC y
dx dx b b

π πµ
 

− − − = 
 

 

The expressions in brackets must be zero, because the conditions are valid for any y: 

                                               

2 2 2

2 2

3 2 2

3 2

0

(2 ) 0

d X m X
dx b
d X m dX
dx b dx

πµ

πµ

− =

− − =
 

By using (3.3.80) it is possible to express 

    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                         

2 2
2

2

3 1 12 2
2

2

2 2
2

2

4 2 22 2
2

2

(2 )

(2 )

mr
bA A A

ms
b

mrr bA A A
ms s

b

πµ
α

πµ

πµ
β

πµ

−
= =

+

+ −
= =

− −

 

When we use these expressions the deflection of the plate is given  

                       ( ) ( )1 2( ) cosh cos sinh sinX x A rx sx A rx sxα β= + + +  

Now we use the condition at x = l . We use again R = rl and S = sl 

 
 
     
                                                                                
     
 
 
 
 
 
 
 
 
 
 
 
 
                                                                        

Obr. Obr.5.2Fig. 3.36  
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2 2 2 2
2 2

1 2 2

2 2 2 2
2 2

2 2 2

cosh cos

sinh sin 0

m mA r R s S
b b

m mA r R s S
b b

π πµ α µ

π πµ β µ

    
− − + +    

    
    

+ − − + =    
    

 

             

2 2 2 2
2 2

1 2 2

2 2 2 2
2 2

2 2 2

(2 ) sinh (2 ) sin

(2 ) cosh (2 ) cos 0

m mA r r R s s S
b b

m mA r r R s s S
b b

π πµ α µ

π πµ β µ

     − − + + − +    
     

     + − − − + − =    
     

 

From the frequency determinant we determine r and s and after that the natural circular 

frequencies. (The solution will be provided by some mathematical sw).  

 
 
3.3.5.2 Vibrations of circular plates 
 
We suppose circular plate with diameter R and thickness h. It is useful introduce polar 

coordinates. The equation (3.3.72) obtains the form 

                  
22 2

2 2 2

1 1 ( , ) ( , )hw r w r
r r r r D

ρϑ ϑ
ϑ

 ∂ ∂ ∂ Ω
+ + = ∂ ∂ ∂ 

  (3.3.83) 

We make the second root of (3.3.83) 

                  
2 2

2 2 2

1 1 ( , ) ( , )hw r w r
r r r r D

ρϑ ϑ
ϑ

 ∂ ∂ ∂
+ + = ±Ω ∂ ∂ ∂ 

 (3.3.84) 

Equation (3.3.83) is fulfilled if is fulfilled one of (3.3.84). Equation of natural mode of 

vibrations is possible to express by 

       , , , , , ,( , ) sin( )m n m n m m n m n m m n m n
r rw r A J B J i m
R R

ϑ λ λ ϑ ϕ    = + +        
 (3.3.85) 

Here we introduced  

                                               
2

4
hR
D

ρλ Ω
=  (3.3.86) 

We determine natural circular frequency Ωmn and λmn. 

The plate clamped at circumference has the boundary conditions 

( , ); ( , ) 0; 0w Rr R w R
r

ϑϑ ∂
= = =

∂
 and from (3.3.85) we get 
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, , , ,

, ,
, ,

( ) ( ) 0
( ) ( )

0

m n m m n m n m m n

m m n m m n
m n m n

A J B J i
J J i

A B
r r

λ λ

λ λ

+ =

∂ ∂
+ =

∂ ∂

 (3.3.87) 

(3.3.87) enables determine amplitude ratio ,

,

m n

m n

A
B

. In case when m = n = 0 λmn = 3,2 and from 

(3.3.86) it is possible determine natural circular frequency 

                                       
2 2

2 2

3, 2D D
R h R h
λ

ρ ρ
Ω = =  

 
3.4 Approximation of continuous system 
 
Among the problems of elastodynamics governed by a system of partial differential equations, 
some of which have been considered in the previous chapters, very few have a closed-form 
solution which simultaneously verifies the differential equations and the boundary conditions 
 
3.4.1 Rayleigh mthod 
 
We know that Rayleigh quotient is given as the ratio of potential and unit kinetic energy 

                                              2 max
*

max

P

K

E
E

λ = Ω =  (3.4.1) 

By this method we can take in the solution the influence of mass points placed on linear 
continues and the influence of elastic supports. We bring in following part the expressions of 
potential and unit kinetic energy of continues defined in previous chapter. 
 
Longitudinal vibrating bar: 

  2

0

1 ( ) ( )
2

l

PE E A x U x dx′= ∫  (3.4.2) 

 
* 2 2

10

1 1( ) ( ) ( )
2 2

l n

K j j
j

E A x U x dx m U xρ
=

= + ∑∫  (3.4.3) 

Torsionale vibrating shaft: 

  2

0

1 ( ) ( )
2

l

P pE G J x x dx′= Φ∫  (3.4.4) 

 * 2 2

10

1 1( ) ( ) ( )
2 2

l n

K p j j
j

E J x x dx I xρ
=

= Φ + Φ∑∫  (3.4.5) 

Bending vibrating beam: 

  2 2

10

1 1( ) ( ) ( )
2 2

l r

P j j
j

E E J x W x dx k W x
=

′′= + ∑∫  (3.4.6) 

   * 2 2

10

1 1( ) ( ) ( )
2 2

l n

K j j
j

E A x W x dx m W xρ
=

= + ∑∫  (3.4.7) 

Vibrating rectangular membrane: 
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221 ( , ) ( , )

2P
A

W x y W x yE N dxdy
x y

  ∂ ∂  = +   ∂ ∂     
∫∫  (3.4.8)      

  * 2 21 ( , ) ( )
2

n

K j j j
jA

E q W x y dxdy m W x y= + ∑∫∫  (3.4.9) 

Vibrating circular membrane  

   
2 2

2

1 ( , ) 1 ( , )
2P

A

W r W rE N rd dr
r r

ϑ ϑ ϑ
ϑ

 ∂ ∂    = +    ∂ ∂     
∫∫  (3.4.10)    

   * 2 2

1

1 ( , ) ( , )
2

n

K j j j
jA

E q W r rd dr m W rϑ ϑ ϑ
=

= + ∑∫∫  (3.4.11) 

Vibrating Rectangular plate 

   

22 2

2 2

22 2 2

2 2

( , ) ( , )

1
2 ( , ) ( , ) ( , )2(1 )

P
A

W x y W x y
x y

E D dxdy
W x y W x y W x y

x y x y
µ

  ∂ ∂
+ −  ∂ ∂   =    ∂ ∂ ∂ − − −   ∂ ∂ ∂ ∂     

∫∫  (3.4.12) 

   * 2 2

1

1 ( , ) ( , )
2

n

K j j j
jA

E h W x y dxdy m W x yρ
=

= + ∑∫∫       (3.4.13) 

Vibrating circular plate 

    
1

0

2 22 2

2 2 2

1 ( ) 1 ( ) 1 ( ) ( )2
2

r

P
r

d W r dW r dW r d W rE D rdr
dr r dr r dr dr

µ
    = + +        

∫  (3.4.14) 

     
1

0

* 21 ( )
2

r

K
r

E h W r rdrρ= ∫  (3.4.15) 

     These expressions are valid for axial symmetric circular plate. 
Rayleigh quotient gives exact values when exact modes are used. We put in the expressions of 
potential and kinetic energy supposed mode, which must satisfy the boundary conditions of 
supports. Very good results are obtained when the static deformations are used. From all 
introduced expressions it is seen that gives the possibility to solve the problems with variable 
cross sections.  
Let we show this method on the cantilever beam with constant high and variable width from 
b0 at the clamped side to zero at the free end (Fig. 3.37).The cross section of the beam is given 

                                     0( ) 1 xA x b h
l

 = − 
   

The quadratic moment of the cross section is 

                                  3
0

1( ) 1
12

xJ x b h
l

 = − 
 

 

 
The deflection curve we suppose parabolic  
     2( )W x ax=  
Potential energy will be calculated from (3.4.6): 
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h 
 
                               x 
 
 
 
 
                                b0                  bx 
 
 
 
 
                                          l 
 

                         x 
 
 
 
                          b0               bx 
 
 
 
                                       l 
 
 
 
 
                                   Fig. 3.37 

 
 
 
 
                                                                   
b 
 
 
 
 
 

l

 
 
 
 
                                                                 b
 
 
 
 
                           l 
 
                               Obr. 6.2 

( )3 21 1
02 12

0

3 21
012

4 1
l

x
P lE E b h a dx

Eb h a l

= − =

=

∫  

 
 
 
Unit kinetic energy gives (3.4.7) 
                  

( )* 2 4 2 51 1
0 02 60

0

4 1
l

x
K lE b h a x dx b ha lρ ρ= − =∫

 
After substituting the necessary 
values in (3.4.1) we obtain the natural 
frequency 

      
3 2 21

2 012
* 2 5 41

060

5P

K

Eb h a lE E h
E b ha l lρ ρ

Ω = = =   

⇒  22, 236 h E
l ρ

Ω =  

 
As the second case we consider the rectangular plate clamped at all sides (Fig. 3.38). 

At first we must choose such function for 
deflection of plate, which satisfies the 
boundary conditions. At clamped edges 
must be deflection and slope equal to zero: 
            2 3 4

1 2( )X x x a x a x= + +  
We determine the constants a1 and a2 so that 
the boundary condition is satisfied also for  
x = l: 

2 3 4
1 2

2 3
1 2

( ) 0
( ) 3 4 0

X l l a l a l
dX l a l a l

dx

= + + =

= + =
 

From here we determine the constants 

1 2 2

2 1a and a
l l

= − = Using these constants 

the course of deflection will be given by equations 

                   2 3 4
2

2 1( )X x x x x
l l

= − +      2 3 4
2

2 1( )Y y y y y
b b

= − +  

The general deflection of the plate is given by following equation 

                   2 3 4 2 3 4
2 2

2 1 2 1( , )W x y x x x y y y
l l l l

  = − + − +  
  

 

The shape of the deflection of the plate according this equation shows Fig. 3.39 

            

  

 

Fig. 3.38 

l 
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                                                                Fig. 3.39 
 
Potential energy is according the equation (3.4.12) 

( )

2
2 2 3 4 2 3 4 2

2 2 2 2
0

4 2 2 4

1 12 12 2 1 2 1 12 122 2
2

7 4 7
11025

l b

P
o

E D x x y y y x x x y y dxdy
l l b b l l l l

D bl b l b l

      = − + − + + − + − + =            

= + +

∫ ∫
 

The unit kinetic energy with respect (3.4.13) is 

          
5 5

2 3 4 2 2 3 4 2
2 2

0 0

1 2 1 2 1( ) ( )
2 793800

l b

K
hb lE h x x x y y y dxdy

l l b b
ρρ= − + − + =∫ ∫  

After substitution in (3.3.88) we obtain 
4 2 2 4

2
4 4

(7 4 7 )72 D b l b l
b l hρ
+ +

Ω =  ⇒ 4 2 2 2
2 2

6 2(7 4 7 Db b l l
l b hρ

Ω = + +  

 
3.4.2 The Ritz method 
 
Ritz method is based on the fact that Rayleigh quotient is in the interval of exact natural 

frequencies. Therefore the natural mode minimizes the Rayleigh quotient. Therefore one 

approximates natural mode by linear combination of  independent functions which satisfy 

boundary conditions. For two dimensional continuum it will be 

           1 1 2 2( , ) ( , ) ( , ) ... ( , )n nW x y a f x y a f x y a f x y= + + +  (3.4.16) 

That’s mean the Rayleigh quotient will be a function of independent parameters  

                  1 2* ( , ,..., )P
n

K

E a a a
E

λ λ= =  

The minima of these values are given by n conditions 

                       2 *
* ( )P

P K
i i K i

E E E
a a E a
λ  ∂ ∂ ∂

= = − Ω ∂ ∂ ∂ 
   for I = 1, 2, ….,n (3.4.17) 
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By this way n homogenous equation are obtained. For non-trivial solution the determinant of 

the system must be zero. Because this determinant is of n stage n natural frequencies are 

obtained 1 2 .... nΩ ≤ Ω ≤ ≤ Ω . Like by all analytical methods the Ritz method is possible use 

only by conservative systems. The advantage is in the fact that we didn’t need construct the 

equation of motion. Only the geometrical boundary conditions are sufficient,  

We show the application on the determination of first two natural frequencies of the prismatic 

beam built in both ends. 

We propose the function, which satisfies geometrical boundary condition in the form 

                                  2 2 3 3
1 2( ) ( ) ( )W x a x l x a x l x= − + −  

This function satisfies the conditions (0) ( ) (0) ( ) 0W W l W W l′ ′= = = = . We determine the 

potential energy from (3.3.93): 

( )

22 2 3 2 2 31
1 1 1 2 2 22

0 2 5 7 2 91 4 12 2
1 1 2 22 5 35 35

2 ( ) 8 ( ) 2 6 ( ) 18 ( ) 6 ( )
l

P a l x a x l x a x a x l x a x l x a x l x dxE EJ

EJ a l a a l a l

 − − − + + − − − + − ==  

= + +
∫

By similar way we determine from (3.3.94) kinetic energy 

   ( )2* 2 2 3 3 2 9 11 2 131 1 1 1 1
1 2 1 1 2 22 2 690 1386 12012

0

( ) ( )
l

KE A a x l x a x l x dx A a l a a l a lρ ρ = − + − == + + ∫  

Substituting in (3.3.104) we get after derivation two equations 

                  
( ) ( )
( ) ( )

5 4 2 2 6 264 1 1
1 25 630 35 2772

7 4 2 2 6 26 1 2 1
1 235 2772 35 12012

0

0

l EJ A l a EJl A l a

l EJ A l a EJl A l a

ρ ρ

ρ ρ

 − Ω + − Ω = 
 − Ω + − Ω = 

 

We expanse the frequency determinant  

                         2 2 8 4 4 2 2 283952 8154432 0
5

A l EJA l E Jρ ρΩ − Ω + =  

And from here we get the natural frequencies 

                          1 22 2

22,374 127,632EJ EJand
l A l Aρ ρ

Ω = Ω =  

The exact solution gives 

                          1 32 2

22, 20 120,90EJ EJand
l A l Aρ ρ

Ω = Ω  

We see, when calculated by Ritz method 1st and 3rd natural circular frequency with mistakes 

0,78% and 5,57%. Much more greater is reached by determination of shear forces and 
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bending moments while the base function are only geometric and force boundary conditions 

are not used. In these cases the mistakes are more than 100%. 

 

3.3.6.3 The finite element method 

 

A complete volume should be dedicated to a systematic statement of the finite element 

method. It is thus not our objective to make complete presentation of it here (it will be done in 

Computational mechanics II.). Our purpose is simply to show its potential and mode of 

application in the context of dynamics of continuous systems. Therefore this discussion will 

be limited to the case of the bar in extension and the beam in bending. 

The finite element method may be regarded as a particular application procedure of the Ritz 

method. It consists in subdividing the deformable body or the structure into a finite number of 

elements of simply geometry well identified structural behaviour (bar, beam, membrane, 

plate, shell, 3-D solid, etc.).  

The interpolation functions are chosen in order to fulfil the following requirements: 

1. Interpolation is performed in terms of piecewise continuous functions. Inside each 

element, the displacement field is represented by a superposition of small number of 

functions, which are chosen to be simple but representative of the element’s structural 

behaviour in the global structure. They are generally of polynomial type. 

2. These functions are also chosen in such a way that their intensity parameters, which 

are the generalized coordinates of the Ritz method, are local values of the 

displacement field in the structure.  

If both conditions are strictly satisfied, the approximation obtained is kinematically 

admissible in the sense of the Ritz method. Indeed, the displacement field is then integrable 

over each element domain and imposing equal values of the generalized coordinates at 

element interface allows us to keep the continuity of the displacement field at the global level.   

 

3.3.6.3.1 The bar in extension 

 
a. Generation of a bar element 

 

Let as consider the case of a bar in extension possibly subjected to distributed load p(t). The 

bar is divided into N elements of length l as sketched in Fig. 3.40. The displacement field in 

the element is linearly interpolated by the formula 
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                                            1 1 2 2( , ) ( ) ( ) ( ) ( )u x t U x T t U x T t= +  (3.4.18) 

 

                                          

                                           element 

                                                 e 
 
                                                                                                     x 
                                                  L  
               
 
 
                               1( )T t    p(x,t)       2 ( )T t  
 
 
                   1( )P t                l                2 ( )P t  
 
                                     Fig. 3. 40 
 
 
where are  
 
  1 2( ), ( )T t T t . . . . . .  the connector degrees of freedom are the axial displacements at both     

                                ends, also called nodes; 

  1 2( ), ( )U x U x . . . .  are the shape functions of the element, chosen in such a way that  

                                                         1 2(0, ) ( ) ( , ) ( )u t T t u l t T t= =  

                                If no internal parameter is introduced, they result from a linear  

                                interpolation  

                                                          1 2( ) 1 ( )x xU x U x
l l

= − =  (3.4.19) 

Equation (3.3.105) may be put in matrix form 

                                    ( , ) ( ) ( ) ( )eu x t x t x element e= ∈N q  (3.4.20) 

where 

      [ ]1 2( ) ( ) ( )e x U x U x=N  . . . . . . . . . . is the shape function matrix of element e 

      [ ]1 2( ) ( )T
e T t T t=q   . . . . . . . . . . . . . .  is the set of degrees of freedom of element e 

 

We may then determine successively 

- the element kinetic energy and strain energy as quadratic forms of the mass and stiffness 

elementary matrices 
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   ,
1
2

T
k e e e eE = q M q& &       and       ,

1
2

T
p e e e eE = q K q  (3.4.21) 

Here is 

                
0 0

l l T
T e e

e e e e
d dm dx EA dx
dx dx

= =∫ ∫
N NM N N K   (3.4.22) 

- the virtual work of external forces in the form 

                ( )T
e e eW tδ δ= − q g  (3.4.23) 

      ( )e tg is the generalized load conjugated to displacements ( )e tq  

                                      1

20

( )
( ) ( , )

( )

l
T

e e

P t
t p x t dx

P t
 

= +  
 

∫g N  (3.4.24) 

       The first term results from the discretization of the load per unit length and the second  

       one contains the end loads of the element. The latter are themselves made of two 

       contributions: The reaction forces with adjacent elements and the eventual external  

       loads. 

For the bar element of uniform characteristics modeled using linear interpolation functions, 

we obtain elementary stiffness and mass matrices 

                                     
1 1 2 1
1 1 1 26e e

EA ml
l

−   
= =   −   

K M  (3.4.25) 

and the discretized force vector representing a uniform load p per unit length over the 

element   

                                                 (1) 1
12e

pl  
=  

 
g                  

 (3.4.26) 

Summing the elements of the mass matrix restores the total mass of the element: 

,
,

k s
k s

ml=∑M  

Hamilton’s principle may be expressed in the form 

                    
2

1

1 1 0
2 2

t
T T T
e e e e e e

t

dtδ δ − + = 
 ∫ q Mq q Kq q g& &  

 
b. Assembly process 
 

In order to express dynamic equilibrium for the global system with N elements having N+1 

nodal displacement we suppose 
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                                         [ ]0 1 2 .....T
Nu u u u=q  (3.4.27) 

                                                e e=q L q  (3.4.28) 

where the localization operator Le is a Boolean matrix in our case with dimension 2*(N+1) 

and containing only 1 and 0 terms. For instance, for elements 1 and 2 : 

                                 1 2
0 0 0 0......0 010 0 .....0
010 0.......0 0 010 ......0

   = =      
L L  

By summing all the elements of the system, the structural variational equation becomes 

                          
2 2

1 11 1

1 1 0
2 2

t tN N
T T T
e e e e e e

e et t

dt dtδ δ
= =

 − + = 
 

∑ ∑∫ ∫q Mq q Kq q g& &  (3.4.29) 

This equation ma be expressed in terms of structural displacements through substitution of 

((3.4.28) into (3.4.29) 
2 2

1 11 1 1

1 1 0
2 2

t tN N N
T T T T T T

e e e e e e e e
e e et t

dt dtδ δ
= = =

      
− + =      

      
∑ ∑ ∑∫ ∫q L M L q q L K L q q L g& &  (3.4.30) 

We then define 

-   The mass matrix of the assembled system, or structural mass matrix 

                                           
1

N
T
e e e

e=

= ∑M L M L  (3.4.31) 

-   the structural stiffness matrix  

                                            
1

N
T
e e e

e=

= ∑K L K L  (3.4.32) 

-   the structural load vector 

                                               
1

N
T
e e

e=

= ∑g L g  (3.4.33) 

It is important that expressions (3.4.31) – (3.4.33) correspond to a formal representation of the 

assembly operation. In practice, structural assembly may be performed much more simply, by 

addressing correctly the matrices Ke and Me in the structural matrices K and M (Fig.3.41). 

It is observed that: 

• The shaded zone corresponds to the clamped end of the bar and must then be 

wiped out. 

• The diagonal mass and stiffness terms ad two by two on the diagonal of the 

structural matrix. 

• Owing to the system topology and the sequential numbering of the degrees of 

freedom, both K and M have tridiagonal form 
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                                                                         Fig. 3.41 
 
When all finite elements have the same length L

Nl = , one obtain for the clamped free bar 

                      

2 1
1 2 1 0

1 2 1

0
1 2 1

1 2

EA
l

− 
 − −
 

− − 
 =
 
 

− − 
 − 

K O O O  

 (3.4.34) 

                          

4 1
1 4 1

1 4 1 0
06

1 4 1
1 2

ml

 
 
 
 =  
 
 
  

M
OOO

 

For the structural load vector g, the assembly operation (3.3.120) corresponds to the sum of 

each node of the contributions of the connecting elements. The reaction forces between 

elements are eliminated by the assembly process. The forces applied externally are the only 

ones to remain in the structural load vector g. The discretized structural equation of motion is 

in the usual form 

                                            ( )t+ =Mq Kq g&&  

element 1 
 
element 2 
 
element 3 
      . 
      . 
      . 
      . 
 
element N-1 
 
element N 

u0 (fixed) 
 
u1 
 
u2 

 

 

 

 

 
uN-1 
 
uN 
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Taking into account equations (3.4.33) the dynamic equilibrium equation at node 

, (0 )j j N< <  is found to have a general form 

                      1 1 1 1( 4 ) ( 4 ) ( )
6 j j j j j j j

ml EAu u u u u u g t
l− + − ++ + + + + =&& && &&  (3.4.35) 

 
 
 
3.3.6.3.2 Bending vibration of beams 
 
Let we consider the case of a beam represented in Fig. 3.42, excited by distributed load p(x, t). 
 
 
                                                                                      p(x ,t) 
                                                                                                          x 
 
                                     
                                      l 
                                                  L 
 
 z, w   
 
                                w1         ψ1              w2         ψ2     x

lξ =  
 

0 1 
 
                                                 Fig. 3.42 
 
The potential strain energy will be obtained by integration over the beam element  

                                      
22

, 2
0

( , )l

p e
w x tE EJ dx

x
 ∂

=  ∂ 
∫  

the function w(x,t) and its first derivative must be continuous. Therefore, to obtain a finite 

element approximation of pure displacement type in the Ritz sense, the interpolation of the 

bending deflection must be at least cubic in order to maintain continuity of the deflection w 

and slope w
xψ ∂

∂=  through nodal identification. The connectors of the element are the 

deflection and slope values at both ends. In terms of the non dimensional variable x
l

ξ =  over 

the element domain, the cubic approximation to the deflection may be written in the form 

                      1 1 1 2 2 3 2 4( ) ( ) ( ) ( ) ( ) ( ) ( )e ew w N N w N N tξ ξ ψ ξ ξ ψ ξ ξ= + + + = N q  (3.4.36) 

Ni(ξ) are the shape functions and they are the third-order Hermitian polynomials, matching 

the conditions 
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                   1 1 1 1 3 1

2 2 2 2 4 2

(0) 1 (0) 0 (1) (1) 0 ( ) (1 )
(0) 0 (0) (1) (1) 0 ( ) (1 )

N N N N N N
N N l N N N N

ξ ξ
ξ ξ

′ ′ ′= = = = = −
′ ′ ′= = = = = − −

 (3.4.37) 

Here was used dN
i dN ξ′ = . In this manner we obtain the matrix of shape functions 

                                             

2 3

2

2

2

1 3 2
(1 )

( )
(3 2 )
( 1)

T
e

l

l

ξ ξ
ξ ξ

ξ
ξ ξ
ξ ξ

 − +
 − =
 −
 

−  

N  (3.4.38) 

associated with the element degrees of freedom 

                                                [ ]1 1 2 2
T
e w wψ ψ=q  (3.4.39) 

 

 

 

One computes successively 

• The kinetic energy of the element 

              ,
1
2

T
k e e e eE = q M q& &  (3.4.40) 

with the elementary mass matrix 

            
1

0

( ) ( ) ( )T
e em ldξ ξ ξ ξ∫ N N  (3.4.41) 

• The potential strain energy of the element 

              ,
1
2

T
p e e e eE = q K q  (3.4.42) 

with the elementary stiffness matrix 

     
1 2 2

2 2 3
0

( )
T

e e
e

d d dEJ
d d l

ξξ
ξ ξ

   
=    

   
∫

N NK  (3.4.43) 

• The virtual work of external loads 

     ( )T
e e eW tδ δ= − q g  (3.4.44) 

with the vector of external loads 

      
1

0

( ) ( ) ( , )T
e et p x t ldξ ξ= ∫g N  (3.4.45) 

For an element of uniform characteristics solicited by a constant distributed load p0 we 

explicitly obtain 
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2 2

3

2 2

12 6 12 6
6 4 6 2
12 6 12 6
6 2 6 4

e

l l
l l l lEJ

l ll
l l l l

− 
 − =
 − − −
 − 

K  

 (3.4.46) 

                                
2 2

2 2

156 22 54 13
22 4 13 3
54 13 156 22420
13 3 22 4

e

l l
l l l lml

l l
l l l l

− 
 − =
 −
 − − − 

M  

                                                    0
6 61 1

2
T l l
e

p l
= −  g  

It is easily verified that the quadratic form Tq Mq  is equal to the translation inertia ml for 

[ ]1 0 1 0T =q , and to the rotary inertia 3

12
ml  about the centre of mass for 

2 21 1T l l= −  q . 

 

  

   4. DIRECT INTEGRATION METHODS 
 
Many numerical integration methods are used for the approximate solution of equation of 

motion or sets of such equations. A complete coverage of numerical integration methods is 

beyond the scope of this book and the student is referred to many available textbooks on the 

subject [],[],[].. In this chapter we discuss some widely used step-by-step numerical 

integration schemes for linear and nonlinear dynamic analysis.  

In a direct integration methods the equations are integrated successively using a step-by-step 

numerical integration procedure. The direct integration method implies that no transformation 

of the equations into a different form is carried out prior to integration. In direct integration 

methods, time derivatives are generally approximated using difference formulas involving one 

or more increments of time. There are two basic approaches used in the direct integration 

methods - explicit and implicit. In an explicit formulation the response quantities are 

expressed in terms of previously determined values of displacement, velocity, or acceleration. 

In an implicit formulation, the temporal difference equations are combined with the equations 

of motion.and displacements are calculated directly by solving these equations. 

 
4.1 Explicit methods 
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    y 
 
 
 
 
 
             
              yi-1           yi         yi+1 

 

 

 

                                       ∆t                 ∆t 

 

 

 
4.1.1 Central difference method 
 

We consider a displacement-time history curve shown in Fig. 4.1.  
 
 
 
 
 
 
 
 
            yi-1               
 
                        ∆t       ∆t 
              
                                                        x 
                             Fig. 4.1 
 

        
1 1

2
1 12 2

2 2

2i i

i

i i i it tt t
i i i

t t

dy dy
y y y y

dt dt y y yd y t t
dt t t t

+ −∆ ∆
+ −

+ −

=

   − − −    −     − +∆ ∆= = =  ∆ ∆ ∆ 
 (4.1.2)

  
Substituting (4.1.1) and (4.1.2) into the equation of motion 

                            + + = tMq Bq Kq Q�� �  

we obtain  

                         2

2
2

t t t t t t t t t
t tt t

+∆ −∆ +∆ −∆− + −
+ + =

∆ ∆
q q q q q

M B Kq Q   (4.1.3) 

This equation is possible arrange to the form 

         2 2 2

1
2

1 1 2 1
2 t t t t t ttt t t t+∆ −∆∆

         + = − − − −               ∆ ∆ ∆ ∆
BM B q Q K M q M q  (4.1.4) 

We can denote 

        

      2 2 2

1 1 2 1 1
2 2t t tt t t t t −∆

     = + = − − − −        ∆ ∆ ∆ ∆ ∆tA M B Q Q K M q M B q  (4.1.5) 

Using these equations we can calculate the displacement in the time t + ∆t 

                                            1
t t t

−
+∆ =q A Q  (4.1.6) 

By this method we work with finite differences 

instead of derivatives  

                       
0

lim
t

dy y
dt t∆ →

∆
=

∆
 

If the curve is continuous with small change of 

slope, the solution is enough accurate even by 

greater time intervals.   

The velocity in the middle of the time interval ∆is 

given by 
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And from previous equations also the velocity and acceleration by using displacements in 

time t and t - ∆t. In next step we put , ,t t t t ttt t t +∆−∆= +∆ = =q q q q  and we determine 

again displacement, velocity and acceleration. 

Thus, to obtain the solution at the beginning of the procedure a special starting procedure is 

needed, because we have not the value q0-∆t . We rewrite the equations (4.1.1) and (4.1.2)          

                                  0 0 0

2
0 0 0

2

2
t t

t t

t

t
+∆ −∆

+∆ −∆

∆ = −

∆ = + +

q q q

q q q q

�

��
 

The values q0 and  q.
0 are given by initial conditions. From both equations we exclude qo-∆t 

and we get 

                                2
0 0 0 0

1
2t t t+∆ = + ∆ + ∆q q q q� ��  

Acceleration 0q&&  we determine from the equation of motion: 

                                 1
0 0 0 0

−= − −q M Q Bq Kq�� �  

Substituting in the previous equation we get 

                            
2

1
0 0 0 0 0 0 2t

tt −
+∆

∆= + ∆ + − −q q q M Q Bq Kq� �  (4.1.7) 

After this starting step the solution continues according the original procedure. 

The local truncation error of the difference formulas used in this method is of the order 
2t∆ Time step for linear dynamic analysis is limited by the highest frequency of the system 

(i.e., maxΩ ) such that 

                                               
max

0, 2t∆ ≤
Ω

 (4.2.8) 

When ∆t does not satisfy this equation a spurious growth of the solution occurs. This is 

known as the numerical instability. For dynamic analysis, (4.2.8) is the necessary and 

sufficient condition for the stability of the central difference method.  

 
4.1.2 Two- cycles iteration method 
 
The incremental form of equation of motion at any time t is expressed 

                            t t∆ =∆ − ∆ − ∆M q Q K q B q�� �  (4.2.9) 

In the first iteration cycle, increments in velocities and displacements are estimated using the 

following formulas 
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For first time step  

                                    t t tt −∆∆ =∆q q� ��  (4.2.10) 

For other time step 

                                      

2

( )
2

t t t t t

t t t t

t t t t

t

t

−∆ −∆

−∆

−∆

∆ = ∆ −∆
= +∆

∆∆ = +

q q q
q q q

q q q

� �� �
� � �

� �
 (4.2.11) 

Increments of acceleration are evaluated, by substituting the relations (4.2.10) and (4.2.11) 

in (4.2.9) 

                                   
1( )t t t t

t t t t

−

−∆

∆ = ∆ − ∆ − ∆
= +∆
q M Q K q B q

q q q
�� �

�� �� ��
     (4.2.12) 

 

In the second iteration cycle, increments in the velocities and accelerations are determined as 

follows: 

                                             

( )

( )

2

2

t t t t

t t t t

t t t t

t

t

−∆

−∆

−∆ +

∆∆ = +

= +∆
∆∆ =

q q q

q q q

q q q

� �� ��

� � �

� �

 (4.2.13) 

The relations from (4.2.13) are substituted in (4.2.12) to calculate the new increments in the 

accelerations. These are then used in (4.2.12) to evaluate accelerations at time t. 

 

4.2.3 Runge-Kutta methods 

 

In this method, the system equations are replaced in state –variables form, that is both 

displacements and velocities are replaced as unknowns defined by 

                                              
 
 =   

q
x

q�
 

The equation of motion is now rewritten as 

                              1 1 1 ( )t− − −= − −q M Kq M Bq M Q�� �  

Using the identity 

                                                  =q q� �  

both equations are written as 
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                         1 1 1 ( )t− − −

       
       = = +       − −       

q 0 E q 0
x

q M K M B q M Q
�

�
�� �

 (4.2.14) 

or 

                                            ( )t∗= +x Dx Q�  

or more schematic  

                                            ( ( ), )t t=x f x�  (4.2.15) 

In Runge-Kutta method, an approximation to t t+∆x  is obtained from tx  in such a way that the 

power series expansion of the approximation coincides, up to terms of a certain order ( )Nt∆  

in the time interval t∆ , with the actual Taylor series expansion of ( ( )t t+ ∆  in powers of t∆ . 

However, the method is self-starting and also has the advantage that no initial values are 

needed beyond the prescribed values. 

For simple writing we will consider the system with one degree of freedom. 

We consider that the function (4.2.15) about the point exists and is unique in the interval 

t∆ about the point. The Taylor series expansion of the solutions yields  

    
2 3( ) ( )( ) ( ) ( ) ( ) ( )

2! 3!t t
t tx t t x x t tx t x t x t+∆

∆ ∆+∆ = = +∆ + + +� �� ��� …  (4.2.16) 

Since we consider ( ( ), )x f x t t f= =�  and further differentiation yields  

                               ( ) t x
f f dxx t f ff
t x dt

∂ ∂= + = +
∂ ∂

��  

Similarly  

                       2( ) 2 ( )tt tx xx x t xx t f ff f f f f ff= + + + +���  

Substituting these results in (4.2.16), we obtain 
2 3

2( ) ( )( ) ( ) ( ) 2 ( )
2 6t x tt tx tx x t x
t tx t t x t tf f ff f ff f f f f ff∆ ∆  +∆ = +∆ + + + + + +   +..  (4.2.17) 

It has been also assumed in the following that the higher derivatives and partial derivatives 

exist at point required. The simplest of the Runge-Kutta method is the first order method, also 

known as Euler method, which retains only the first two terms of the Taylor series expansion. 

Hence, in the Euler method, the approximation to the solution is given by 

                                   ( ) ( ) ( ( ), )x t t x t tf x t t+∆ = +∆  (4.2.18) 

The results are reasonably accurate only for the first few time steps with small ∆t. After that 

the approximation usually diverges from the actual solution. 
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The general idea behind the higher order Runge-Kutta methods is to retain the higher order 

terms in (4.2.17). However, the method does not require evaluation of the derivatives of the 

function f. Instead, approximations are obtained at the expense of several evaluations of the 

function f at each time step. 

The solution can also be written in the integral form 

                          ( ) ( ) ( ( ), )
t t

t

x t t x t f x dτ τ τ
+∆

+∆ = + ∫  (4.2.19) 

Application of the mean value theorem of integral calculus to (4.2.19) yields  

                         ( ) ( ) ( ( ), )x t t x t tf x t t t tα α+∆ = +∆ + ∆ + ∆    (4.2.20) 

for some α such that 0<α<1. The problem is now to avoid the evaluation of explicit higher 

derivatives required in (4.2.17) and in the expansion of (4.2.20). 

 

4.2.3.1 Second order Runge –Kutta method 

 

Here, α is chosen so that Taylor series expansion of  (4.2.20) agrees exactly with (4.2.17) up 

to terms of order (∆t)2. Letting ( ) ( )x t t x t tα β+ ∆ = + ∆ +… , the Taylor series expansion of 

(4.2.20) gives 

                   2 2( ) ( ) ( ) ( )t xx t t x t tf t f t fα β+∆ = +∆ + ∆ + ∆  (4.2.21) 

Comparing (4.2.21) with (4.2.17) when only terms of order (∆t)2  are retained , we obtain 

                                                        
1
2

α β= =    

Hence, in second order Runge-Kutta method, the approximation to the solution is given by 

                            ( ) ( ) ( ) ( ( ),
2 2
t tx t t x t tf x t f x t t

 ∆ ∆ +∆ = +∆ + +   
 (4.2.22) 

In the algorithm of numerical solution is advantageous to use the following practice 

At the time to is known x(to)=xo and we solve 

                                   ( )
1 0 0

2 0 1 0

1
0 0 2

. ( , )
. ,

( )
2

k t f x t
k t f x k t t

kx t t x k

=∆
=∆ + +∆

+∆ = + +

 (4.2.23) 
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4.2.3.2 Fourth order Runge – Kutta method 

 

To obtain good accuracy, the commonly employed method is the fourth order Runge-Kutta 

method. Again, to avoid the evaluation of explicit higher order derivatives, we set 

                                           

( )

( )

1

1
2

2
3

4 3

. ,

. ,
2 2

. ,
2 2

. ,

i i

i i

i i

i i

k t f x t

k tk t f x t

k tk t f x t

k t f x k t t

=∆
 ∆ =∆ + +   
 ∆ =∆ + +   

=∆ + +∆

  (4.2.24) 

By using of these coefficients  we get 

                              ( )1 2 3 4
1( ) ( ) 2 2
6i ix t t x t k k k k+∆ = + + + +   (4.2.25) 

The first and second order Runge – Kutta methods are hardly ever employed because the 

results that they yield are not very accurate. Hence, if a Runge-Kutta method is chosen as the 

integration technique, it is usually the fourth and higher order method.  

The truncation error e, for the fourth order is of the form 

                                                          5( )e k t= ∆  

where k depends on the f(t, x) and its higher order partial derivatives. Since the Runge-Kutta 

method is an explicit method, the maximum time step is usually governed by stability 

considerations.  The method can be considered as an inherently stable method, since the 

change in time step can be easily implemented at any stage of the advance calculation. 

The principal disadvantage consists in the fact that each forward step requires several 

evaluations of the functions. This increases considerable the time and cost of computation. 

 
 
4.2 Implicit methods 
 
From all implicit methods we show three of them. 
 
4.2.1 Houbolt method 
 
This method is based on a third order interpolation of displacements. In the Houbolt 

integration scheme, multistep implicit formulas for velocity and acceleration are derived in 

terms of displacements using backward differences. With references to Fig. 4.2 we can write 
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 ∆ t  ∆ t ∆ t

             
2 3

2 6t t t t t t t t t
t tq q tq q q+∆ +∆ +∆ +∆

∆ ∆
= − ∆ + −& && &&&             (-8)    (-27)              (4.2.1a) 

            
2 3(2 ) (2 )2

2 6t t t t t t t t t t
t tq q tq q q−∆ +∆ +∆ +∆ +∆

∆ ∆
= − ∆ + −& && &&&                              (4.2.1b) 

           
2 3

2
(3 ) (3 )3

2 6t t t t t t t t t t
t tq q tq q q− ∆ +∆ +∆ +∆ +∆

∆ ∆
= − ∆ + −& && &&&  (4.2.1c) 

 

Solving equations (4.2.1 a, b, c) for t tq +∆&&  and t tq +∆&  in terms of , ,t t t t tq q q+∆ −∆  we obtain the 

following formulas: 

             ( )22

1 2 5 4t t t t t t t t tq q q q q
t+∆ +∆ −∆ − ∆= − + −

∆
&&  (4.2.2) 

             ( )2
1 11 18 9 2

6t t t t t t t t tq q q q q
t+∆ +∆ −∆ − ∆= − + −

∆
&  (4.2.3) 

 

 

 

 

 

 

 

 

 

 

  

 

 

                                                     

                                                     Fig. 4.2 

 

The same form of equations is in matrix form: 

              ( )22

1 2 5 4t t t t t t t t tt+∆ +∆ −∆ − ∆= − + −
∆

q q q q q&&  (4.2.4) 

q 

t

 qt-2∆t    qt-∆t      qt       qt+∆t
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              ( )2
1 11 18 9 2

6t t t t t t t t tt+∆ +∆ −∆ − ∆= − + −
∆

q q q q q&  (4.2.5) 

Substituting (4.2.4) and (4.2.5) into the equation of motion we obtain 

      

( )

( )

22

2

1 2 5 4

1 11 18 9 2
6

t t t t t t t

t t t t t t t t t t t

t

t

+∆ −∆ − ∆

+∆ −∆ − ∆ +∆ +∆

− + − +
∆

+ − + − + =
∆

M q q q q

B q q q q Kq Q  

We arrange this equation in the form: 

2 2

22 2

2 11 5 3
6

4 3 1 1
2 3

t t t

t t t t t t

t tt t

t tt t

+∆

−∆ − ∆ +∆

   + + − + +   ∆ ∆∆ ∆   
   + + − + =   ∆ ∆∆ ∆   

M B K q M B q

M B q M B q Q  (4.2.6) 

We denote the effective mass matrix M and effective force vector t+∆tQ  

                   2

2 11
6 tt

 = + + ∆∆ 
M M B K  (4.2.7) 

                  

2

22 2

5 3
2

4 3 1 1
2 3

t t t t t

t t t t

tt

t tt t

+∆ +∆

−∆ − ∆

 = + + − ∆∆ 
   − + + +   ∆ ∆∆ ∆   

Q Q M B q

M B q M B q
 (4.2.8) 

Now it is possible determine the displacement  

                                    1
t t t t

−
+∆ +∆=q M Q  (4.2.9) 

It can be noticed that in the Houbolt method, calculation of t t+∆q  involves displacements at 

, , 2t t t t t− ∆ − ∆ . Therefore a special starting procedure is required to obtain solution at time 

t∆  and 2 t∆ . The method also requires large computer storage to store displacements for two 

previous time steps. 

 

4.2.2 Wilson theta method 

 

In the Wilson theta method, it is assumed that the acceleration varies linearly over an 

increment of time tϑ∆ , where 1,0ϑ ≥  as shown in Fig. 4.3. 
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                                                                                     The dynamic system remains constant                            

constant dur                                                                  during the interval. If τ is the time 

                                                                                      increase between t and t tϑ+ ∆ , then 

                                                                                      for the time interval t to t tϑ+ ∆ , it is 

                                                                                      assumed that  

                                                                                       

 
 
 
                          Fig. 4.3 
     

   ( )t t t
t t t t t

t t

q q t q q q q
q q t

ϑ
τ ϑ

τ

ϑ τ
τ ϑ

+ ∆
+ + ∆

+

− ∆
= ⇒ = + −

− ∆
&& &&

&& && && &&
&& &&   (4.2.10) 

Integrating (4.2.10) we obtain 

    ( )
0 0

1t

t

q

t t t t t
q

q dq q d q q d
t

τ τ τ

τ ϑτ τ τ
ϑ

+

+ + ∆= + −
∆∫ ∫ ∫

&

&

&& & && && &&  

         ( )
2

2t t t t t tq q q q q
tτ ϑ

ττ+ + ∆= + + −
∆

& & && && &&                   (4.2.11) 

After the next integration 

    

3
2 ( )

2 6
t

t t t t t t
qq q q q q

tτ ϑ
ττ τ
ϑ+ + ∆= + + + −

∆
&&

& && &&  (4.2.12) 

Substituting tτ ϑ= ∆  into (4.2.11) and (4.2.12) 

we obtain following expression at time t tϑ+ ∆ : 

                  ( )
2t t t t t t t

tq q q t q qϑ ϑ
ϑϑ+ ∆ + ∆

∆
= + ∆ + −& & && && &&  (4.2.13) 

   ( )
2

2 ( )( )
2 6

t
t t t t t t t

q tq q q t t q qϑ ϑ
ϑϑ ϑ+ ∆ + ∆

∆
= + ∆ + ∆ + −

&&
& && &&  (4.2.14) 

From these equations we obtain 

                      ( )3 2
2

t
t t t t t t

q t
q q q q

tϑ ϑ
ϑ

ϑ+ ∆ + ∆

∆
= − − −

∆
&&

& &  (4.2.15) 

  q&&  

tq&&              qτ&&  t tq ϑ+ ∆&&

τ

tϑ∆

t
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                      ( )2

66 2
( )

t
t t t t t t

q
q q q q

ttϑ ϑ ϑϑ+ ∆ + ∆= − − −
∆∆
&

&& &&  (4.2.16) 

Equations (4.2.15) and (4.2.16) are solved for t tq ϑ+ ∆&&  and t tq ϑ+ ∆&  in terms of t tq ϑ+ ∆  as 

             ( )3 2
2

t
t t t t t t

q t
q q q q

tϑ ϑ
ϑ

ϑ+ ∆ + ∆

∆
= − − −

∆
&&

& &  (4.2.17) 

                     ( )2

66 2
( )

t
t t t t t t

q
q q q q

ttϑ ϑ ϑϑ+ ∆ + ∆= − − −
∆∆
&

&& &&  (4.2.18) 

The difference formulas in the Wilson theta algorithm are then given by 

     

             ( )3 2
2

t
t t t t t t

t
tϑ ϑ

ϑ
ϑ+ ∆ + ∆

∆
= − − −

∆
q

q q q q
&&

& &  (4.2.19) 

                      ( )2

66 2
( )

t
t t t t t tttϑ ϑ ϑϑ+ ∆ + ∆= − − −

∆∆
q

q q q q
&

&& &&    (4.2.20) 

We consider the equation of motion at time t tϑ+ ∆  to obtain solution for the displacements, 

velocities and acceleration at time t + ∆t. Since the acceleration vary linearly, a linearly 

projected force vector is used such that 

                                 t t t t t t t tϑ ϑ ϑ ϑ+ ∆ + ∆ + ∆ + ∆+ + =Mq Bq Kq Q&&  (4.2.21) 

where 

                                     ( )t t t t t tϑ ϑ+ ∆ +∆= + −Q Q Q Q  

Substituting (4.2.19) and (4.2.20) into (4.2.21), we obtain 

 

2 2 2 2

6 3 6 3

6 2 2
2

t t t t t

t t

t t t t
t

t

ϑ ϑϑ ϑ ϑ ϑ
ϑ

ϑ

+ ∆ + ∆
   + + = + + +   ∆ ∆ ∆ ∆   

∆   + + + +   ∆   

M B K q Q M B q

M B q M B q& &&

 (4.2.22) 

 

We express the effective mass matrix M  and effective force vector t tϑ+ ∆Q   

                                     2 2

6 3
t tϑ ϑ

= + +
∆ ∆

M M B K  (4.2.23) 

    2 2

6 3 6 2 2
2t t t t t t t

t
t t tϑ ϑ

ϑ
ϑ ϑ ϑ+ ∆ + ∆

∆     = + + + + + +     ∆ ∆ ∆     
Q Q M B q M B q M B q& &&  .(4.2.24) 
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By using of these equations we obtain 

                                      1
t t t tϑ ϑ

−
+ ∆ + ∆=q M Q     (4.2.25) 

The solution (4.2.25) yields t tϑ+ ∆q , which is then substituted in the following equations to 

obtain accelerations, velocities and displacements at t + ∆t: 

                             ( )3 2 2

6 6 31t t t t t t tt tϑϑ ϑ ϑ+∆ + ∆
 = − − + − ∆ ∆  

q q q q q&& & &&  (4.2.26) 

                             ( )
2t t t t t t
t

+∆ +∆
∆

= + +q q q q& & && &&  (4.2.27) 

                             
2

( 2 )
6t t t t t t t
tt+∆ +∆

∆
= + ∆ + +q q q q q& && &&  (4.2.28) 

The method is proven to be unconditionally stable for values 1,37ϑ ≥  for linear dynamic 

systems, but a value of 1,5 is often used for nonlinear problems. An anomaly of this method is 

that equilibrium is never satisfied at time t + ∆t. 

 

4.2.3 Newmark beta method  

 

The Newmark integration method can be treated as an extension of the linear integration 

scheme. The method uses parameters α and β, which can be changed to suit the requirements 

of the problem at hand. The equations used are given 

                                      [ ](1 )t t t t t t tα α+∆ +∆= + − + ∆q q q q& & && &&  (4.2.29) 

                                      ( ) 21
2 ( )t t t t t t tt tβ β+∆ +∆ = + ∆ + − + ∆ q q q q q& && &&  (4.2.30) 

α and β are parameters which are determined to obtain integration accuracy and stability. The 

effect of these parameters is the change the form of the variation of acceleration during the 

time interval ∆t: 

  1 0
2

andα β= =    the acceleration is constant and equal to tq&&  during each time interval ∆t 

  1 1
2 8

andα β= =   the acceleration is constant from the beginning as tq&&  and then changes to                     

                                  t+ tq ∆&&  at the middle of the time interval ∆t. 
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  1 1
2 6

andα β= =   the acceleration varies linearly from tq&&  to t+ tq ∆&&  

1 1
2 4

andα β= =   the acceleration remains constant at an average value of ( ) / 2t t tq q +∆+&& &&  

 

The difference formulas in the Newmark beta algorithm are 

       ( )2

1 1 1 1
2t t t t t t tt tβ β β+∆ +∆

 
= − − − − ∆ ∆  

q q q q q&& & &&  (4.2.31) 

       ( ) 1
2t t t t t t tt

t
α α α

β β β+∆ +∆

   
= − − − − ∆   ∆    

q q q q q& & &&  (4.2.32) 

 

Substituting (4.2.31) and (4.2.32) into the equation of motion at time t + ∆t 

                                    t t t t t t t t+∆ +∆ +∆ +∆+ + =Mq Bq Kq Q&& &  

We express the effective mass and effective force vector: 

                                    2

1
t t

α
β β

= + +
∆ ∆

M M B K  (4.2.33) 

2

1 11 1 1
2 2

1

t t t t t t

t

t
t

t t

α α
β β β β

α
β β

+∆ +∆

        
= + − + ∆ − + + − +        ∆        

 
+ + ∆ ∆ 

Q Q M B q M B q

M B q

&& &

 (4.2.34) 

By using of these formulas it is possible to determine 

                                             1
t t t t

−
+∆ +∆=q M Q  (4.2.35) 

(4.2.35) yields t t+∆q  which is then substituted in (4.2.31) and (4.2.32) to obtain velocities and 

accelerations at t + ∆t. 

The important features of this method are that for linear systems the amplitude of mode is 

conserved, and the response is unconditionally stable provided that 1
2α ≥  and 

20, 25( 0,5)β α≥ + .However, the 1 1
2 4andα β= =  give the largest truncation error in the 

frequency of the response. 

 

5. TUNING OF MECHANICAL SYSTEMS 
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The process changing the masses and stiffness of mechanical systems to obtain the required 

natural frequencies and natural modes, is called tuning of mechanical systems.    

For simplicity we will consider free non damped mechanical system described by its mass, 

stiffness and geometrical parameters. These elements generate vector of tuning parameters or 

tuned vector. 

                                         1 2, , ,
p

T
sp p p =  p K   

The eigenvalues 2
i iλ = Ω  and natural vectors, normed by mass matrix, expresses vector of 

tuned parameters  

                              2 2 2
1 2 1 2, , , , , , ,T T T T

n n = Ω Ω Ω l v v vK K   

Usually, we do not change all elements of the tuned vector but only some of them. In such 

case is defined the selecting vector [ ]ij=j  of order k n< . The selecting vector determine the 

elements of tuning vector to them we specify certain values. So arise the reduced tuned vector 

[ ]1 2, ,...,T
r r r rkl l l=l . Often we require change of natural frequencies. In such case we speak 

about spectral tuning. If modal vectors are to be changed we speak about modal tuning. 

The vector of required tuning values is signed l* which is of order k. To reach this vector we 

change only some elements of the tuning vector. So arise the reduced vector of tuning 

parameters pr, which is defined by the selecting vector of tuning parameters  

                                                   [ ]1 2, ,..., si i i=i  

with s elements. In next we omit the word reduced as well the index r by both vectors – 

tuning and tuned. The required tuned values depend on tuning parameters l = l(p).  

 

5.1 The method of successive linear approximations  
 

The tuning is mathematical formulate as finding the vector p* so that 

                                                         * *( ) =l p l  (5.1.1) 

The tuning process do not change the tuning parameters, which are not involved into the 

reduced vector of tuning parameters pr. However, the tuned parameters that may not be 

changed must be involved in the tuned vector l. 

If the vector of tuned parameters l(p) is defined in the surroundings of outgoing point p0 it is 

possible every function  li(p) expand into the Taylor series 



 121

1 1 1 1 2 2

1 1 21 1 2

1 1 2 2 3 3

1 2 3 1 2 3

2
(0) (0) (0)0 0

0
1 1 1

3
(0) (0) (0)0

1 1

( ) ( )1( ) ( ) ( ) ( )( )
2

( )1 ( )( )( )
3!

p p

p p p

s ss
i i

i i i i i i i i
i i ii i i

s s s

i i i i i i
i i i i i i

l ll l p p p p p p
p p p

l p p p p p p
p p p

= = =

= =

∂ ∂= + − + − − +
∂ ∂ ∂

∂ − − − +
∂ ∂ ∂

∑ ∑∑

∑∑∑

p pp p

p …

 (5.1.2) 

We will take into account the linear restitution (we use only two first terms of  (5.1.2). We 

introduce the gradient vector of the function li(p0): 

                                  0 0
0

1

( ) ( )( ) , ,
T

i
i

s

lgrad l
p p
p pp

 ∂ ∂ =  ∂ ∂ 
…  (5.1.3) 

By using (5.1.3) in (5.1.2) we may write 

                    0 0 0( ) ( ) ( )( )T
i i il l grad l+ −p p p p p�    for i = 1,2,…,k (5.1.4) 

We use the Jacobi matrix of notation, which is also called the tuning matrix 

         
1 0

0
0

0

( )
( )( )

( )

T

i

jT
k

grad l
l

p
grad l

 
   ∂   = =   ∂      

p
pL p

p
#    for i = 1,2,…,k   j = 1,2,…,s  

The notation of (5.1.4) is possible to simplify  

                                   0 0 0( ) ( ) ( )+ −l p l p L p p�  (5.1.5) 

The tuning matrix is generally rectangular (k,s). Its elements in i – row  and j – column 

express the rate of change tuned value on the change of tuning parametr, therefore it is 

possible to cal it the sensitivity matrix.If the tuning matrix is regular and for its majority is 

valid 

                                             0( ) min( , )h k s=L p  

Then exists for k s≥ the left hand side inverse matrix 

                              ( ) 1

0 0 0 0( ) ( ) ( ) ( )L T TL p L p L p L p
−

=  

For k s≤ exists right hand side inverse matrix 

                               ( ) 1

0 0 0 0( ) ( ) ( ) ( )P T T −
=L p L p L p L p  

By using of these equations it is possible determine from (5.1.5) 

                                 ( )0 0 0( ) ( ) ( )p p L p l p l p++ −�  (5.1.6) 

L+ is right hand side or left hand side matrix. 

If we want solve (5.1.1) we get by using (5.1.5) and (5.1.6) 

                                  ( )0 0 0( ) ( )p p L p l l p+ ∗+ −�  (5.1.7) 

This expression is loaded by an error, because  
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1. The linear consideration (5.1.5) is by non-linear systems approximate  

2. If r > s the solution (5.1.6) is only the best approximation  

To diminish the error we consider (5.1.7) as iteration and we use the expression 

                   ( )1 ( ) ( )l l l lp p L p l l p+ ∗
+ = + −    for l = 1,2,…. (5.1.8) 

From the initial value p0 we determine the first member of the series pl and successively the 

next terms. If the series converge we sign the limit p* as the result. The basic requirement of 

solution (5.1.1) is  to obtain the best values of tuned values. The tuning process is finished if 

the following condition is fulfilled  

                                                   
2

1
1

( )1
k

i i
i

j

g ε∗
=

 
 − ≤  

∑
i

l p
l

 (5.1.9) 

ε1 is chosen small positive number, which define the allowed error of tuned values. gi are 

positive weight coefficients , that allowed to prefer some of tuned parameters. (5.1.9) used 

relative errors. The square values are used because it does not depend on the sign of the 

difference. By accurate solution would be the left hand side of equation (5.1.9) equal to zero. 

In all other cases is positive.  

In some cases the exact solution does not exist. For very small values of ε1, (5.1.9) will be 

never fulfilled, and even it can coverage. Therefore we introduce other criterion  to stop the 

calculation  

                                              
2( 1)

2( )
1

1
p ls

j
l

j j

p
p

ε
+

=

 
 − ≤   

∑  (5.1.10) 

ε2 is again relative error of tuned parameters. If the process does not converge it is necessary 

to stop the calculation after a fix given number k0 of iteration steps.   

 

5.2 Dynamic sensitivity 
 
The aim of sensitivity analysis is to obtain quantitative information about the sensitivity of 

structural natural frequencies and natural and natural modes to variations of tuning parameters 

such as spring stiffness, elasticity coefficients of materials, concentrated masses, distribute 

masses, cross section area etc. Dynamic sensitivity is defined as the ratio of natural 

frequencies or natural vectors to the unit change of tuning parameters.  
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The sensitivity analysis is becoming more valuable in dynamic structural systems for several 

purposes: 

- to get a better knowledge of the sensitivity of a structure to slight modifications 

- to obtain derivatives for the dynamic optimization and tuning of a structure by 

mathematical programming methods 

- to obtain derivatives for the updating of a dynamic model which aims to match 

numerical and experimental results 

To derive dynamic sensitivity and also the coefficients of tuning matrix given by (5.1.4) 

it is necessary to derive i

jp
λ∂

∂
and ki

j

v
p

∂
∂

. Here is 2
i iλ =Ω , vki is k – element of i – natural vector, 

pj is a tuning parameter. As was derived the free non-damped system is described by the 

equation 

                                             ( )i iλ− =K M v 0  (5.2.1) 

Or in the form 

                                                i i iλ=Kv Mv  (5.2.2) 

We suppose the normalization of the vector 1T
i i =v Mv and multiply (5.2.2) by T

iv from left 

hand side we obtain a simple form 

                                                T
i i iλ=v Kv  (5.2.3) 

The derivative of (5.2.2) over pi we get 

                        i i i
i i i i i

j j j j jp p p p p
λ λ λ∂ ∂ ∂∂ ∂+ = + +

∂ ∂ ∂ ∂ ∂
v vK Mv K Mv v M  

After multiplying of this equation by T
iv  from left hand side and using the previous 

normalization we obtain 

                            ( )T Ti i
i i i i i

j j j jp p p p
vK Mv v v K Mλ λ λ

 ∂ ∂∂ ∂  = − + − ∂ ∂ ∂ ∂ 
 (5.2.4) 

After transposition of (5.2.1) is  

                                       ( )T T
i iv K M 0λ− =  

When we apply this equation on (5.2.4) we get 

                 Ti
i i i

j j jp p p
λ λ

 ∂ ∂ ∂  = −  ∂ ∂ ∂ 
K Mv v    for i = 1,2,…,n and j = 1,2,…,s (5.2.5) 

(5.2.5) represents the sensibility of eigenvalue λI to the change of tuning parameter pj. 
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For next solution we suppose that k

jp
∂
∂

v  is  a linear combination of natural vectors 

                                        ( )

1

n
jk

ki i
ij

a
p =

∂ =
∂ ∑v v  (5.2.6) 

After substituting (5.2.6) into (5.2.4) we obtain after arrangement the equation for non-

diagonal elements: 

                          ( )

1

( ) 0
n

T j T
i k k ki i k l

lj j

a
p p

λ λ
=

 ∂ ∂   − + − = ∂ ∂ 
∑K Mv v v K M v  (5.2.7) 

With respect to (5.2.3) we may write 

                                               T T
i l il i l i ilδ λ δ= =v Mv v Kv  (5.2.8) 

The Kronecker coefficient has the values 

                                           
1
0

il

il

pro i l
pro i l

δ
δ
= =
= ≠

 

Now we can write (5.2.7) in the form 

                                     ( ) ( ) 0T j
i k k ki i k

j j

a
p p

λ λ λ
 ∂ ∂   − + − = ∂ ∂ 

K Mv v  

From this equation we obtain 

                                 ( ) 1j T
ki i k k

k i j j

a
p p

λ
λ λ

 ∂ ∂  = −  − ∂ ∂ 
K Mv v  (5.2.9.) 

 

If some of eigenvalue are equal we will work as shown in next process  

We make derivative of the expression for normalization  

                                    0
T

T Ti i
i i i i

j j jp p p
∂ ∂∂+ + =
∂ ∂ ∂

v vMMv v v v M  

Each summand in this equation is scalar. The first summand is obtained by transposition of 

the last one and we can write 

                                                2 T Ti
i i i

j jp p
∂ ∂=−
∂ ∂

v Mv M v v  

When we substitute in this equation (5.2.6) , then  

                                                    1
2

T
ii i i

j

a
p

∂=−
∂

Mv v  (5.2.10) 
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Substituting the coefficient given by (5.2.9) and (5.2.10) in (5.2.6) we obtain the expression 

for determination of the sensitivity natural vectors: 

                        
1
ˇ

1 1
2

n
T Tk
i i k i k k k

ij k i j j j
í k

p p p p
v K M Mv v v v v vλ

λ λ=
≠

  ∂ ∂ ∂ ∂ = − −  ∂ − ∂ ∂ ∂   
∑  (5.2.11) 

  

5.2.1 The tuning process 
 
The starting state is the designed mechanical model with given mass, stiffness and 

geometrical parameters. In such case the mass matrix M and stiffness matrix K are known. 

Then we must know which elements of the tuned vector will change what values they have to 

reach. The tuning process is possible to describe by following algorithm:  

1. We determine the natural frequencies ΩI, and natural vectors vi of the designed model. 

We provide the normalization over the mass matrix M. 

2. With respect of  tuned requirements we determine the selecting vector of tuned 

parameters 
1

k

j j
ii

=
 =    and so will be determined the tuned vector l. 

3. We make the sensitivity analysis of the designed model. By this way the starting 

values of tuning matrix L are given. This matrix is a column matrix of order s, which 

involves all structure parameters, which may be changed. 

4. We determine the selecting vector of tuning parameters [ ] 1

s
i i

jj
=

= . So the tuning 

vector p is given. The number of tuning parameters we preferably choose equal to the 

number of requirements k. In such case * 1−=L L  and the solution is exact. The 

selection of tuning parameters is made with respect of the results of the sensitivity 

analysis. The sensitivity determines the absolute values of the tuning matrix and the 

tuning parameters correspond to the columns of this matrix. The measure of sensitivity 

of tuning parameters is the sum of absolute values of the column matrix ijl =  L  for 

i = 1,2,…,k; j = 1,2,…,s. Whereby the sum 
1

k

j ij
i

c l
=

  =    ∑  is greater so the sensitivity is 

greater. 

5. We choose the relative errors of tuned parameters ε1 and tuning parameters ε2, the 

greatest number of iterations k0, eventually the weight coefficients of tuned values. By 

using of simple arithmetic we do not choose relative errors greater then 10-8. In the 
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case s ≥ k we choose ε1 > ε2 approximately of two orders. The number k0 is not 

necessary be greater then 10. 

6. We decide about using of admissible region and of the possibility of  a shortening of 

the step ∆p . Using of admissible region is necessary from the physical point of view 

(tuning parameters can not be negative). With respect to this we determine the lower 

and upper bar. If the upper bar may grow to infinity we choose it of some order 

greater then the starting value. 

7. We start the own tuning of the system according the equation (5.1.8) 

8. We check the results of tuning process and its compilation. If the process divergates 

we choose smaller value of the step and we repeat the calculation. 

9. We calculate natural frequencies and modal vectors of the mechanical system with 

new parameters. We compare the results with given requirements.  
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