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1. INTRODUCTION

These course have been written for the students in the 4th year ( 1% year of 2™ stage)
on the faculty of mechanical engineering, specialization Computer Mechanics 1. In general,
the text may be used for all students studying the theory of vibrations.

Numerical analysis has been studied since before the time of Newton. These studies
were concerned with numerical procedures for approximating solutions to problems that could
not be conveniently solved by theoretical methods leading to analytical solutions expressed by
formulas. Until the arrival of high-speed computing machines, such methods were difficult to
use, and their full potential could not be realized.

With the arrival of modern computing machines the whole character of numerical
analysis has changed. Iterative methods can now be used with much greater ease and
effectiveness. Very large linear systems can be studied numerically. Numerical solutions of
differential equations can be obtained using very small step size, or even variable step size,
with thousands of steps. Today, the elaboration of efficient computational models for the
analysis of the dynamic behaviour of machines and structures has became a routine task.
Computer can be used to automate many engineering applications. When they are used
effectively they produce results that demonstrate an increase in productivity and a reduction in
numerical errors. Many professional software are used, like ANSYS, NASTRAN, SYSNOIS,
RAYNOLDS, MAPLE, MATLAB, etc., to solve the analysis of stresses and dynamic loading
in frames and machines parts.

In every technical solution we have to observe following elements of solution:
Statement of problem
Determine the effective theoretical approach
Mathematical description of the model
Algorithm development
Input/output design
Choose numerical methods
Computer implementation
Program development
Program testing
We see that the computer implementation is one of all necessary steps only. Therefore in

each type of problem we will review the theoretical ideas connected with such problem.



2. ANALYTICAL DYNAMICS OF DISCRETE SYSTEMS

Analytical dynamics is based on principle of virtual work, which is transferred to the
concepts to the energy and work. Because these quantities are scalars is such approach to
calculus called Scalar Dynamics in opposite to the vector dynamics. This method provides a

very powerful tool for two main reasons:

e It considerably simplifies the analytical formulation of the motion equations

for a complex mechanical system

e It gives rise to approximate numerical methods for the solution for both

discrete and continuous systems in the most natural manner

2.1 Principle of virtual work for a particle

Let us consider a particle of mass m;, submitted to a force field X of components X;.
The dynamic equilibrium of the particle can be expressed in d’ Alembert’s form
mii, — X, =0 i=123 (2.1.1)
where u; represents the displacement of the particle.

Let us consider that the particle follows during the

time interval [t;,tz] a motion trajectory u; distinct

from the real one u, (fig. 2.1). This allows us to

6111

define the virtual displacement of the particle the

relationship

Su=u' —u; Su(t)=out,)=0 (2.1.2)

1 1 1

The virtual displacement may be arbitrary in the time interval (t;, t;). We suppose only, that

on the beginning and end of the interval is the displacement equal for both paths. Therefore

ou,(t,)=0ou,(t,)=0. From (2.1.2) it is seen, that the change operator ¢ is connected with the

time derivative operator:

%(514,.):%(”;—%):5[;—% =5, (2.1.3)



If we multiply. (2.1.1) by the associated virtual displacement and sum over the components,

we get
3
D (mii; — X,)5u; =0 (2.1.4)
i=1

which shows that

The virtual work produced by the effective forces acting on the particle during a virtual

displacement ou, is equal to zero.

If we consider N particles in a system the eq.(2.1.1) will be changed to
myiiy — X, =0 for i=123; k=1,.N (2.1.5)
the virtual work principle for the system of particles takes the form

>

k=1 i

(mk’;iik _Xik)5uik =0, (2.1.6)

3
=1

and it can be stated that

If the virtual work equation is satisfied for any virtual displacement compatible with the

kinematical constraints, the system is in dynamic equilibrium.

2.2 The Kkinematical constraints

Without kinematical constraints, the state of the system would be completely defined by the
3N displacements components uix. They represent the instantaneous configuration. Starting
from the reference configuration xj . It is possible determine the instantaneous configuration
from the equation

S =x, +u, (x,1) (2.2.1)
The system is said to possess 3N degrees of freedom.
In however, the particles are submitted to kinematic constraints which restrain their motion
and define dependency relationship between particles. The constraints are divided on:

a) Holonomic constraints, which are defined by relationships of type
S0 =0 (2.2.2)

Every holonomic constraint reduces by one the number of degrees of freedom

of the system




If there is not explicit dependence with respect to time, the constraints are said to be
scleronomic. Otherwise they are called rheonomic.
b) Nomn-holonomic constraints are such, if they ar not put in the form (2.2.2). In

particular, non-holonomic constraints often take the form of differential relationship
S (G &at) =0 (2.2.3)

These equations are generally not integrable .
2.3. Generalized coordinates and displacements

If s holonomic constraints exist between the 3N displacements of the system, the number
of degrees of freedom is then reduced to 3N — s. It is then necessary to define n=3N —s

configuration parameters, or generalized coordinates, noted (q,,...,q,) in terms of which

the displacements of the system of particles are expressed in the form

1y (6,) = U, (41 Gsen 54,51 2.3.1)
When only holonomic constraints are applied to the system, the generalized coordinates
are independent and may be varied in any arbitrary manner without violating the
kinematic constraints. The virtual displacement compatible with the holonomic constraints
may be expressed in the form

Su, = 2%5% (2.3.2)
s=1 q

N

The virtual work equation becomes

AT ou,
2| 22 (mdhy = Xy )7 | g, (2.3.3)

and putting the second term in the form

2,064,
s=1

Qs 1s called the generalized force
The generalized force conjugated to the degree of freedom appears as
3

X Uy
-1 oq

s

0. = (2.3.4)

N
Pz

1



The first term in (2.3.3) has the meaning of generalized inertia force
2.4. Hamilton’s principle for conservative systems

Hamilton’s principle is a time integrated form of the virtual work principle obtained by

transforming the expression

LI N 3
| {Z (—m,iiy, + Xik)5uik}dt =0 (2.4.1)
f =1

k=1 i
where ou, are arbitrary bur compatible virtual displacements which verify the end conditions

(2.1.2).

First, let us assume that the applied forces X, can be derived from the potential energy, so

that virtual work can be expressed in the form

X, 0u, =Y 069, =-0E, (2.4.2)

s=1

2

N 3
k=1 i=1

1

The generalized forces are derived from the potential energy by the relationship

OE

0, =- 24, (2.4.3)

The term associated with inertia forces is transformed by noting that
d . .. C e . 1 .
7 (myaiy Oy, ) = myiiy Ouy + myai, Oty = myii, ouy + 5 (myaiy i)
t
Owing to the definition of the kinetic energy of the system

2

k=1 i

E = mu, i, (2.44)

3
=1

N | —

the equation (2.4.1) may be written in the form
N 3 b 23
[—Z kauikauik} +8[(E,~E,)dt=0 (2.4.5)

in which the time boundary condition can be eliminated by taking account of the end
conditions (2.1.2).

The functional in (2.4.5) can be expressed in terms of generalized coordinates g noticing that

) oUu, &-aovu, .
U, =——+ : 2.4.6
ik at ; aq‘ qs ( )
and therefore
E, =E(9.9.t) E,=E,(qg.1) (2.4.7)



Using the equations (2.1.2) and (2.3.2) the boundary condition may be also be written
0q.(t)=0q,t,)=0 (2.4.8)
Hamilton's principle for conservative system may thus be stated in the following form
The real trajectory of the system is such as the integral

o)

[(E ~E,)t

h
remains stationary with respect to any compatible virtual displacement arbitrary between

both instants t; and t, but vanishing at the ends of the interval.

5T<Ek “E)=0;  5q,(t)=05q,(1,)=0 (2.4.9)

h

2.5 Lagrange’s equations of 2"® order

Starting from expression (2.4.9) the system of equations of motion are easily obtained in
terms of generalized coordinates. We can write
( OE OFE
OE, =) | —~6q, +—L 54
‘ Z[ 50 25 qu

s=1 s K

Using more explicit form of (2.4.9)

[l Levo, |og, +Lrsg, ar=0
aq, oq

f 5=l s

The second term can be integrate by parts

N s

P sg.de=| Lrsg, | -[L L |sqar
! oq, oq ) dt\ 0q

h

Taking into account the boundary conditions the following is equivalent to Hamiltons

principle

10



> _4 ‘E +%+QS 5q.dt 2.5.1)
dt\ 0q, ) Oq

4 s=1 s

The variation o¢, is arbitrary on the whole interval and the equations of motion result in the

form obtained by Lagrange

AT B s=12,m (2.5.2)
dt\ 0q, oq, ‘

2.5.1 Classification of generalized forces

A distinction can be made between internal and external forces. In both cases they are said to

be conservative if the associated virtual work is recoverable.

Internal forces

Among the internal forces, the distinction can be made between the linking forces, those

associated with elastic deformations and those resulting from a dissipation mechanism.

a. Linking forces

Linking forces appear in a rigid connection between two particles. They are such as the
system of forces is in equilibrium
X +X,=0

The virtual work associated with the virtual displacement is

3 3
A=) (X, 0u,+X,0u,)=> X, (6u, —Su,)=0

i=l i=l
since the non-zero relative virtual displacement are not compatible with the constraints. Hence
it can be deduced that the linking forces do not contribute to the generalized forces acing on

the global system.

11



Their absence from the evaluation of the generalized forces is one of the attractive aspects of

Lagrangien mechanics.

b. Elastic forces

An elastic body can be defined as a body for which any produced work is stored in a

recoverable form, thus giving rise to a variation of internal energy

3N
5Epint = Zz Oup ou, = _Z 0,04,

with the generalized forces of elastic origin

OFE

S 2.5.3
0, o (2.5.3)

N

c. Dissipative forces

The dissipative force may be characterised by the fact that it remain parallel and in opposite
direction to the velocity vector and is a function of its modulus. Therefore a dissipative force
acting of a mass particle £ may bi expressed in the form
v
X, ==C f,(v)—*
Vi

or in terms of components

V.,
X =_Cikf}c(vk)v;k (2.5.4)
k

where is
Cy 1s a constant
(i) 1s the function expressing velocity dependence

vk 1s the absolute velocity of particle :

3 3
_ _ 2 _ .2
Vi —|Vk|— Z"ik = Z”ik
i=1 i=1

The virtual work of the dissipative forces acting on the system is

n 3 N N n d/l
200, =22 Xl = 23,0 X2 4,
s=1 i=l k-1 i=l k=1 s=1 s

From here



0,=-Y5C, f,(v) T (2.5.5)

i-1 k=1 k &I
By noticing that
du ou, SN2/
Vik — ik — ik + z ik é‘qr
dt d r=1 &Ir
vy _ Ouy
aq,  0q,

it is possible to write

SAY Vie Vi 4 o |1 )
Z;C fk k) : z:_éckfk(vk)%{zzvik}:

i=l

g (2.5.6)
=-2.C /iy )—k.
; kJk\"k aqs
Let us introduce the dissipative function D as
N Vk
D=3 [C,f,()dv (2.5.7)
k=1 ¢
and thus
0,--2 (2:5.8)
ay,

By assuming that the dissipative function D is homogeneous of order /4 in the generalized

velocities on gets

d
dt(E +E ) —hD

The order /4 of the dissipation function is

h=1 dry friction
h=2 viscous damping
h=3

aerodynamic drag

External conservative forces

When the external forces are conservative, their virtual work remain zero during a cycle

13



54=[]]0,5,=0
and a potential energy is possible to use for definition of generalized force
OF

0 :—ﬁm (2.5.9)

s

External non-conservative forces

If the external forces are of the non-conservative type, the generalized force is

(2.5.10)

ik
i=1 k=l K

I ou
i( ) 1i
Qs Z Z ik aqg

Lagrange equation of motion in the general case of non-conservative systems with

rheonomic constraints may be explicitly expressed in the form

OE
i(al?")—aEM P+a—l.)=Qv(t) s=1,2,..,n (2.5.11)
dt 0g, 0q, 0Oq, 0q

N S

14



3. VIBRATIONS

We owe to Lord Rayleigh the formulation of the principles relative to theory of
vibration such as they are applied and taught nowadays. In his remarkable treatise entitled
Theory of sound and published in 1887 he introduced concept of oscillations of a linear
system and showed the existence of natural modes and natural frequencies for discrete as well
as continuous systems. His work remains valuable in many ways even though he was
concerned with acoustics rather than with structural mechanics.

Vibration is in general a motion periodic in time and is used to describe oscillation in
mechanical systems. In most cases, the general purpose is to prevent or attenuate the
vibrations, because of their detrimental effects, such as fatigue failure of components and
generation of noise. However, there are some applications where vibrations are desirable and
are usefully employed, as in vibration conveyers, vibrating sieves, etc.

Because of their constant aim to minimize the stress in structures, the designers were
the first who needed to get vibration and structural dynamic under control. During the next
years, they had to limit the scope of their analysis and apply methods that could be handled by
the available computational means.

Vibrations may be classified into three categories:

e Free vibrations can occur only in conservative systems where there is no
friction, damping and exciting force. Here, the total mechanical energy, which
is due to the initial conditions, is conserved and exchange can take place
between the kinetic and potential energies.

o [External forces that excite the system cause forced vibrations. The exciting
forces supplies energy continuously to compensate for that dissipated by
damping.

o Self-excited vibrations are periodic oscillations of the limit cycle type and are
caused by some nonlinear phenomenon. The energy required to maintain the
vibrations is obtained from a non-alternating power source. In this case, the

vibrations themselves create the periodic force.

15



3.1 Single-degree-of-freedom systems

q Let we consider the model shown

VvV o
v =

in fig.3.1. Displacement ¢

k
_/b/ \/I\/I\/\/\_ m . o) is measured from the stable

equilibrium position of the system,

T

R

the velocity ¢ , the acceleration g~
Fig. 3.1 is measured positive in the

positive direction of displacement. The equation of motion is:

mg +bq + kg = Q(t) (3.1.1)
where itis: k stiffness constant

b damping constant

This system is one of the simplest dynamic systems in which elastic, dissipating and inertia
forces interact. In torsion system the mass m will be replaced by mass moment of inertia /
and the force Q(t) by the moment M(t). The solution of the differential equation of motion is
composed of two parts: the solution of the homogenous equation

mg+bg+kg=0

When we introduce

the damping factor O = [racy }

and natural circular frequency of non-damped system Q, = \/E [” acy J

we obtain
G+20¢+Qq=0 (3.1.2)
The solution of this homogenous equation is

= e % (AcosQt+ BsinQt) = Ce ™ sin(Qt — @) (3.1.3)
A, Bor C, ¢ are the integration constants, which can be determined from the initial

conditions.

The circular frequency of damped system is

e 4]

16



The particular solution will be derived from the equation

G+28¢+Qq = o0
m

The solution depends on the form of the force Q(t).

3.1.1 The force of excitation is harmonic

(3.1.4)

Very important case for practical applications is when the applied force is harmonic

represented in complex notation:

Q(t) — Qoeia)t — Qoeilpp ei(ot — Qoei(wt+¢7F)

(3.1.5)

Using the properties of complex numbers we write the equation (3.1.1) in the form:

(b +iom +£jc} =0()
110}

(3.1.6)

We define the complex mechanical impedance as the ratio of the force and velocity:

7 =Ze" :Q—Et):b—ki(ma)—ﬁj
q @

Z is the modulus of mechanical impedance

Z =\(Re(2))’ +(Im(2))’ _k \/(1—3—2} +(2br Qﬂj

m 0

The phase angle is defined as

e, [w_Qj
Q o

b

@, =arctg

The velocity is possible to express as the imaginary part of complex velocity:

g, =1m(§) = %Sm(wt Yo, —p)

The complex displacement is the derivative of the velocity...

~

-~ _q_0 0 . o
» Zgzﬁzﬁepr(a)ﬂf% —(Pz)]:H(la))Q

H(iw) is called complex transfer function of the mechanical system.

The displacement is the imaginary part of the of the complex solution

q, = Im{ap}: _%COS(C‘” T Qr _(oz): aQ)—;sin[a)t+ Pr _((ﬂz -

17
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3.1.7)

(3.1.8)

(3.1.9)

(3.1.10)

(3.1.11)

(3.1.12)



In next description we notify the expression ¢ ,—7/2 = ¢. It is called the phase retard.

Using the equation (3.1.8) we get
q, =5, sin(ot + ¢, — @)
S, 1s the amplitude of forced response:
9,
k-7 +(2b,1)

Here is 17 = Qﬂ the frequency ratio and b, = — =

Sy =

0 Q, 2m

0

(3.1.13)

(3.1.14)

is the damping ratio.

The expression % =q,, is the deformation of the spring statically loaded by the amplitude of

exciting force sometimes called static deformation. So is defined frequency transfer or the

coefficient of amplification:

9o i-nf + o)

Sy 1

(3.1.15)

This dimensionless quantity is plotted in the amplitude diagram shown in Fig. 3.2

e, 0.5 1.0 1.5 2.0 2.5
/ b= 0
r
4
. 0.1
o
o
n
<
2 / >
/\
____—Ft0a
\\
0
0 0.5 1.0 1.5 2.0 2.5
n= (;)/(20
Fig. 3.2

The amplitude contains the family of curves one for each value of damping ratio b;. All curves

lie bellow the one for zero damping. Thus we see that the amplitude of forced vibration is

diminished by damping. By zero damping and by 77=1 or (o =Q,), the amplitude goes to

18



infinity. This state is called the resonance. The maxima of various curves of damped

vibrations do not occur any long for 7 =1 but at a smaller value:

n, =+1-2b7 <1

and the maximum frequency transfer is:

1

A =———F— (3.1.16)
2b \J1-b’
When the damping ratio is very small b <<1 it is possible touse A, = E
The phase angle is given by the expression
w2 )
tgp, =) _ 0 @ (3.1.17)
Re(Z2) b
In the equation (3.1.13) we introduced the angle ¢ which is
tgo=tg( 0, 2| =
8P =1g| ¢, > 120,
Substituting in this expression we obtain the phase
2
(p:arctgl b,~772 (3.1.18)

The equation (3.1.18) is possible to plot in the phase angle diagram (Fig. 3.3), which is also

of considerable interest. For no damping, it is seen that below resonance the force and the

displacement are in phase (¢ =0),

For damping different from zero the other curves represent the phase angle reach the phase of

90° by resonance. By measuring the phase angle it is possible to determine the exact point of

resonance. So we have been derived the particular solution.

The general solution consists of the damped free vibration superposed on the forced vibration.
q=Ce ™ sin(Qt+¢,)+s, sin(wt + ¢, —@,) (3.1.19)

After a short time the damped free vibration disappears and the forced vibration alone

persists. Therefore the forced vibration is also called the sustained vibration, while the free

vibration is known as the transient vibration.

19



150}

100

50t

Fig. 3.3
3.1.2 The excitation by rotating mass

Very often the excitation is caused by unbalanced rotating mass. Such case is shown on
Fig. 3.4. The unbalanced rotor is represented by the mass m; placed on the eccentricity e from
the axes of rotation. m is the total mass of the equipment. The resultant stiffness is £ and the
damping is b. The vertical inertia force is

F =men’sinot

The equation of motion is
. ) , o omy o, .
g+26G+Q,q =—-ew sinwt
m

When we compare this equation with (3.1.4) we see that both equation
O(t) = mew” sin ot

Therefore the solution is identical to that excited by harmonic force. The amplitude
of sustained vibrations is given by following formula

2
men

(1=} +(2b,n)

(3.1.20)

Sy =

20



Fig. 3.4

The frequency transfer will be

2

=0 = i (3.1.21)
me =) +(@b,n)
m

This expression is possible to plot in the amplitude diagram (Fig. 3.5).

6

b=0

r
4 \
0.1
<
2
%.2 \
/'-—\
— ]
0.4
0 R
0 0.5 1.0 1.5 2.0 2.5
n
Fig. 3.5
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3.1.3 The force is general function of time

Very often the excitation force is a general function of time. The particular solution is given

by Duhamel integral:
1 0 —0(t-7) 3
q, :m—Q.([Q(t)e " sinQ(t — 7)dr (3.1.22)

The analytical solution of this integral is possible for simple functions of general force.
But the Duhamel integral is possible advantageous to solve numerically, even when the force
is obtained a table. In Tab. 3.1 the algorithm for solution on PC is shown. We suppose that the

force is given tabular. The numerical integration is performed by using the Simpson rule

Xni2 h
[ F)dx =20, 440,04 3,.0)

The length / of integration interval is constant and the number N of intervals mast be even.

Algorithm of numerical solution of response by using Duhamel integral is shown in Tab. 3.1.

3.1.4 Exciting force is a periodic function of time

In many cases the exiting force is a periodic function of time. It means that its value repeat
after the period 7F

Ft)=F(@t+T,)=F(t+nT,) forn=1,2,....,n
In such case it is possible expand the force into Fourier series

F(t)=Y_(F, cosiat + F, siniot) (3.1.23)

i=0
_2r
where @ = /TF

The determination of Fourier coefficients is well known from mathematics:

1
Fo=7- [Far

F 0

T
F, = Ti [ F(t)cos(ian)dt (3.1.24)

F 0
2

F, =— j F(t)sin(iot)dt
TF 0

The equation (3.1.4) by using (3.1.23) will have the form

G+204+Qlq = lZ(F” cos(it) + F,, sin(ict)) (3.1.25)

m -

22



/M KB/

/Tox0.v)/
D =B/2/M

v

OMO = V(K/M)

v

OM = (OM0"2-D"2)

v

A = (VO+D*V0)/OM

DT =TV/N

=1+1

A
74—
\Y% —

S

I g |

—
[\

1

—
I
=
o
=

=

S aCh
4

Tab.3.1 Numerické feSeni Duhamelova
integralu

S=S+F(I)*EXP(-D*T1)*SIN(OM*T1)

S1=S1+F(I)*EXP(-D*T1)*SIN(OM*T1)

[-I+2]

23

: ﬁ
Tl =TV-DT

'

F1=F(1)*EXP(-D*T1)*SIN}OM*T1)

v

P=(F1+4*S+2*S1)*DT/3

v

OMT=OM*TV

'

Q-((X0*COS(OMT)+A*SIN(OMT)*
EXP( D*TV)+P/(OM*M)




In practical applications we do’'nt take infinity number of Fourier coefficients, but only 7.
The right hand side of (3.1.25) we arange when used
F,=Fsing, F,, =Fcosg, forl=12,...
Soitis
F,
F =\F:+F; Or; :arctgF—h (3.1.26)
2i
Now we can re-write the equation (3.1.25) in the form

F n
2j+2é‘q'+Q(2]q=—1°+i2Fisin(ia)t+(pFi) (3.1.27)
m m o

If holds the law of superposition we can determine the response for each component of the
force separately and then the resultant response is given by adding all particular calculated
responses due to separate harmonic terms of (3.1.27).

The general solution is obtained again from the homogeneous and particular solutions.

4=4;+90+ 2.4, (3.1.28)
1
In this equation is
Fy _ Fy

Zto _ "0 3.1.29

7o kK mQ; ( )

q, = Ce™ sin(Q+¢,) (3.1.30)

g, =Sy sin(iot + ¢, — ;) (3.1.31)

The amplitude of particular solution is done by

F.
So = 2’ (3.1.32)
-] +@2b,in?
and
2b.in
@, = arctg ——— (3.1.33)
1= (in)*

From (3.1.32) we see that, that particular harmonic components magnified the response
according the value of F; and the order i.

Very often the course of forces is known from measurements. In such case the components of
Fourier series is also possible to get from measured values. We consider the period of the
force is Tr and the number of of measurements is N+1. The time interval will be At = T¢/N,

and the time from the beginning of force action is tj = jAt.
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We introduce the value

2 . T 27
T NT N

The measured function will be denoted by Y(¢,) =Y, . The coefficients of Fourier series are

determined by
1 N
F =—%y
10 NJZ(; J
F, =£ZY]. cos(zy—ﬁj for/=12,...,]
N - N
2
Fa=—3 2ijx
NZYJ sin[j
Jj=0 N

The numerical solution on PC is without any problem. The algorithm is shown in Tab. 3.2.

3.1.5 The kinematical excitation

The exciting, considered so far has been done by the force acting on the moving mass. Now
we shall consider that the frame move harmonically according the formula

q.(t)=hsinwt (3.1.34)
Such case is sometimes called seismic excitation.

The differential equation of motion of the moving mass will be

~b[¢-4.(0)]-k[g-q.()]=mg (3.1.35)
After arrangement of (3.1.35) we get
mg+bqg+kq=>bq,(t)+kq,(t)=f(t) (3.1.36)

It is seen that the motion is harmonic. If we consider that the base move according (3.1.34)
the function f{t) is
f(t) =bhwcoswt + khsin wt

Using the notation Q, = \/E and 0 = ZL the equation (3.1.36) obtains the form
m m

G+26¢+Qiq =25hw cos wt +Qhsin ot (3.1.37)

The right hand side of (3.1.37) is possible to simplify by notation
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26hw = p,sing,
Qjh = p, cos .

From here we get

Py = QU +(25hw) = Qh1+(2b,n)

@, =arcig(2b,n)
By using of these expressions the equation (3.1.37) obtains the form

G+264+Qiq = p,sin(wt+¢.) (3.1.38)

The particular solution of this equation will be

q, =S,sin(wt + ¢, — @) (3.1.39)
with the amplitude of harmonic motion of the mass
@b s L+ @b (3.1.40)

Ja=72)2 + b7y’ b J&-n?) - @b

Sy =

The course of frequency transfer X\ is shown in Fig. 3.6.

6
b=0
0.1
4
=
0.2
2
AR
\\
\\04
— |
0
0 0.5 1.0 1.5 2.0 25
n
Fig. 3.6
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The phase is given by the formula

3
@ =arctg 22b,77 > (3.1.41)
1= +(2b,1)
The phase diagram is on Fig. 3.7.
0
b= 0.1
150} —_—
0.2
1001 0.4
50|
0
0 0.5 1.0 15 2.0 25

Fig. 3.7

3.1.6 Theory of vibration isolation

An unbalanced machine has to be installed in a structure where vibration is undesirable. Such
situation is not uncommon. An elevator motor in a building and the machine in an automobile
are examples. The problem consists in mounting the machine in such a manner that no
vibration will appear in the structure to which it is attached. We consider the rigid frame.
For this case it is possible to use the Fig. 3.1. The force is transmitted from the moving mass
to the frame through the spring and the damper.
F. =kq+bq

The vibrating mass moves according the law

qg=s,sin(wt+@.—p) q=s,0cos(ot+@, —@)
Therefore we get for the transmitted force

F, = s,k sin(ot + ¢, — @) + s,bw cos(wt + ¢, — @) (3.1.41)

The equation (3.1.41) is better transform in the form
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5

2*PI*I*(J-1)/N > G

v

S+Y(J)*cos(G) —> S

v

S1+Y(J)*sin(G) — S1

&

IA

+1-I I.L

¢
==

2*S/A — F1(I)

v

| 2*S1/A » F2(I)|

IA

0 +1-I1

| 2*PI/TF — OMF |

v

OMF/OMO — ETA

I*ETA —» C

>

| 2*BR¥I*ETA —> C1 |

v

| F()/(K*((1-C**2)%*24C1#%2)) - S(1)|

| arctg(C1/(1-C**2)) — FI(I)|

(J-1)*TF/A > T

9 -

| X+S(1)*sin(I*OMF*T-FI(1) >X |

®
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Tab. 3.2 . The algorithm of response on periodic force.

F. =F, sin(ot+ ¢, —p+¢;) (3.1.42)
This form we get by putting
Sok = F,, cos @,
s,bw = F, sin g,
From these equations we get

Fyy = syhnJ1+(2b,7)’ (3.1.43)

Substituting for s, from equation (3.1.14) we obtain the amplitude of transmitted force

Q1+ (2b,7) (3.1.43)

FTO =
JA=77 +@2bn)

transmitted force Fy,

We can use the transmissibility factor A = and get

impressed force - 0,

_ 1+(2b,7)"
JA=17) +(2b,n)

The form of equation (3.1.44) is the same as (3.1.41). Therefore the amplitude diagram is the

A

(3.1.44)

same as in Fig. 3.6.
The phase is given by the formula
@, =arctg(2b,n) (3.1.45)
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3.2 Vibrations of n-degree-of-freedom systems

Exactly all systems have the mass as well as stiffness distributed continuously in the whole
system. Even in the simplest system — the mass point on a spring — the mass is not
concentrated in the point and the spring is not mass less. When we need only one natural
frequency we construct a mechanical model like in the Fig.1. This model represents the
searched properties with enough accuracy. Simpler model enables more easy mathematical

calculation and many times gives a sufficient accuracy. If we need to know also the higher

’ 44154, 92:92>9> qn_,c}‘,fin »
. m o my " . m n_/\/k{Jr}_ %
_/\/\él_ J\/\/bz_ l_a/l by by é
L I i L /

Fig. 3.8

natural frequencies, the model must be more complicated. Usually we design more
complicated mechanical model — so called linear desecrete model. We obtain as many natural
frequencies, and as many natural modes as they are degrees of freedom.,
Let we consider the model on the Fig. 3.8. The equations of motion is possible to obtain by
using of Lagrange equations, or Hamilton’s principle. In such simple models it is possible to
write directly for each released mass.

mg, + (b, +b,)d, — by, + (K, + k), —kaq, = 0, (1)

m,G, —b,q, + (b, +b;)q, —b,q, —k,q, +(k, +k;)q, —k,q, =0, ()

mnqn _bnq‘n—l + (bn +bn+1 )qn _knqn—l + (kn + kn+1 )Qn = Qn (t)

We obtained n simultaneous differential equations of second order with constant coefficients.
When the number of degrees increases the solution is difficult and not providing an easy
survey. Therefore we write the set of equation of motion in matrix notation:

Mq +Bq + Kq = Q(t) (3.2.1)

In this equation is:
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q,9,q displacement, velocity, acceleration, respectively. They are expressed by a column
matrix q" =[g,,¢,,...q,]. Q" (1) =[0,,0,.....,0,] is the vector of time depending

exciting forces. M is the mass matrix, B is the matrix of damping and K is the stiffness
matrix . At conservative systems are squared, symmetric and are of order n. When we

consider model on Fig. 3. 8, they have the form:

m 0 0 0 b+b, -b, 0 0
N B A
0 0 0 m 0 0 —b b,
k+k, -k, 0 0
| ko ktk -k 0
0 0 -k, k +k,

3.2.1 Free, un-damped vibrations

Free, un-damped vibrations described by equation
Mg+Kq=0 (3.2.2)
is important for the next solutions. Therefore we concern on it in detail.

We consider the solution of (3.2.2)
q — ueiQt
Here u is a vector of amplitudes of harmonic motion u” = [u,,u, ...,u, |. £2is the circular

frequency. Equation (3.2.2) by using the assumption of harmonic motion will have the

form
(K-Q’M)u=0 (3.2.3)

(3.2.3) represents the set of homogenous equations. For non-trivial solution must be the

determinant equal to zero
det|K - QM| =0 (3.2.4)
This determinant is called the frequency determinant. When we developed this
determinant we get the firequency equation of n order for Q; :
a, Q) +a, QU+ +aQ] +a, =

While the matrices are positive and definite the roots of this equations are real values:
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0<Q, <Qp, €. $Q

On
When we substitute a natural frequency in (3.2.3) we obtain again the set of homogenous
equations. Therefore it is necessary to divide each equation by one element of the

amplitude vector u;;. We get for example

By this way it is possible to create n variable sequences. The vectors v, gives the shape of
the vibrating system but not the absolute value of the displacements of its members.
Therefore these vectors are called modal vectors. From n sequences we choose that one,
whose maximum absolute value is 1. This process is called normalization. The

normalization is possible to carry out by using one of the following procedure...

Ty —
v,v, =1
r —

v.Mv, =1
r —
v.Kv, =1

Which procedure is advantageous we shall see later.

The displacements that belong to » mode are given by the following equation

q,=v,e" (3.2.5)
or in the real region
q=v,sin(Q,t+¢,) (3.2.6)

From this equation it is seen, that the mode does not change during the vibration.
The general solution of (3.2.2) is given by linear combination of all modes
q=>Cv,e" (3.2.7)

r=l

C, are complex integration constants. In real region (3.2.7) obtains the form

q= Z Cv, sin(Q,t+¢.) (3.2.8)

r=1

or

q= ZV, (A4, cosQ,.t+ B sinQ, ) (3.2.9)

r=1
The integration constants C;, ¢, or 4;, B; pro » =1,2,...,n are determined from initial

conditions. The modal vectors is possible arrange in modal matrix
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Viin Vi Vin
Vor Vo Vau

V=[v,v,,..,v, ]=| . e, (3.2.10)
_vnl vn2 . . vnn

And the natural circular frequencies in spectral matrix

0L 0 .. 0
0 QL .. 0

Q= . S (3.2.11)
0. . L Qp ]

3.2.1.1 Orthogonality of vibration modes

Let we consider that researched mechanical system has natural circular frequencies Q,, # Q,

Equations (3.2.3) are written in the form
(K-Q2 M)y, =0
(K- M, =0

We multiply the first equation by the vector v/ and the second one by v! :
v (K-Q} M)v, =0
vI(K-Q) M)v, =0
The second of these equations will be transposed
viK-a M), =0
Now we subtract this equation from the first one:
(@), ~ai fimy, =0
Because it has been supposed that 0, # Q) must be valid
v/Mv, =0 (3.2.12a)
And by similar procedure we get
vMv, =0 (3.2.12b)

Always when r#s
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(3.2.12a,b) are the orthogonality relationships between natural modes of distinct natural
frequencies. In vibration of mechanical systems they say that if the system vibrate by one
natural frequency it is in the system only the mode belonging to the natural this frequency. It
is also possible to say: The mode vectors belonging to various natural frequencies are
orthogonal with respect to the mass matrix as well the stiffness matrix. The quadratic forms

q,Kq, =k,

q,Mq, =m,, (3.2.13)
are respectively called generalized stiffness and generalized mass of mode r. The
orthogonality relationships is possible to write in more complex form

VMV =[vIMv |=[m, |=M

v
(3.2.14)
V'KV = vKv, | =k, |=K,
Vis called the modal matrix. The matrices My, and K, are diagonal. We notice that the mass
matrix is positive definite. Therefore all generalized masses are positive.

The modal matrix is possible to use to define the main or normal coordinates. The normal

coordinates y we obtain by modal transformation:
y=V'q or q=Vy (3.2.15)
The solution of linear systems is very advantageous, because remove the constraints between

the equations of motion.

Let we consider the un-damped system
M +Kq = Q()

If substituting for q from (3.2.15) we get

MVy + KVy = Q(¢)
Multiplying this equation from left by modal transformed matrix V' we obtain

M i+K y=V'Q1t)=Q,(t)
Because the matrices My and K are diagonal we get n independent equations
m,y, +k,y. =0, forr=12,..n (3.2.16)
If the modal vectors have been normalized (M, = V MV =E ), the equation of motion will
be
y+K,y=Q, (9 (3.2.17)

and K, =Q;
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3.2.1.2 Determination of natural frequencies and modal vectors by Jacobi’s method

To calculation the natural frequencies and modal vector is possible applied the method in
mathematics called eigenproblem.
The equation (3.2.3) is possible to arrange on the form
(M'K-Q2E, =0

We denote M'K = A and Q; = A, and substitute these values in the previous equation

Au, =/Au, (3.2.18)
This is the mathematical formulation of eigenproblem. If matrix A is symmetrical the
equation (3.2.18) is possible to solve by Jacobi’s method. Therefore, using it to compute
vibration natural frequencies of a mechanical system requires the preliminary construction of
the symmetric dynamic flexibility matrix of the system.
Although it is hundred years old, Jacobi’s method is still frequently used. Indeed it is
characterized by an exceptional stability and a very great simplicity. It can be applied without
restriction to any symmetric matrix, whether its eigenvalues are positive, negative or zero.
Jacobi’s algorithm consists of progressively reducing the initial symmetric matrix to the
diagonal form by an infinite sequence of orthogonal transformations. To do so, we construct a
series of matrices verifying the recurrence relationship
We introduce the denotation

T, =S;S;,--S,AS;S,..S, where T, =A

(k)

The elements of matrix Ty are tl.(jk) and elements of Sy are S

We define v, = ZZ(t;") )2 for all cases wheni #; and £=0,1,2,...
i=l j=1

we =2 > (17)? fork=0,1,2,...
j=1 i=l
During each of transformation steps we ask zero of not-diagonal members but so, that it will
be valid

Vi, <V, a w,,=w, when I{l_l’)l’ivk =0

During the calculation we try to nullify the non-diagonal element, for example t;’;_” so, that

t;’;) = 0. This is possible to produce by a transformation matrix Sx. We can imagine the
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transformation geometrically by rotation of the axes in the plane by the angle 3, . If we want

to nullify the element on the row p and column ¢ the transformation matrix will be

1 0 0 0O 0 0

0 1 0 0 0 0

S - 0 0 cosd 0 sing O

“loo 0o 1 0 0
-sind, 0 cosd,

10 0 0 0 0 1]

By using this transformation matrix we make the necessary transformation
T, = SIZc-Tk—ISk
After the necessary multiplication we get:

(k) _ () _ (k) _ k)
t, =t =t cosd —t,; " sinI,

for j#p a j#¢q (3.2.18)
t;.;‘) = t;]'.‘) = t;;"” sin 9, + tg.‘"” cos g,
(k) _ (k) _ (k1) (k1) o3
t,)) =t =t cosP —t. ' sin,
oo ! for izp a i#q (3.2.19)

1) =1 =157 sind, +17" cos 8,

k) _ (k1) 2 (k=1) = 2 A (k-1)
t,, =t, 'cos” & +t, ~sin” G —2f ~sing cosd,

(k) _ ,k-1) s 2 (k-1) 2 (k=1) _+
ty, =1, sin”& +t, ' cos” G +2¢, 7 sing, cosI, (3.2.20)

1
*) — 40— L (kD) _ kD) s (k=1) -
lyy =t = 5 (tpp Loy )sm29k +1,,  cos28 =0

(k) _ ((k=1) - ;
;) =t; 7 fori#zp a j#q
While we nullify the element t;’;) the third of equation (3.2.20) must be zero. Therefore

26570 PR 26570
T ey Uk T S Ay
q9 pp

pp

1929, = (3.2.21)

49
By this manner we continue in all next steps. The number of orthogonal transformations
needed to achieve the diagonal form is infinite. In practice, however, the process can be
stopped when the non-diagonal terms tend to zero with the required accuracy. Usually we
finished the process when the norm of non-diagonal terms reach the required accuracy or the

average value of maximum non-diagonal element is smaller then some specified value:

\/(Z 3 4 /(n(n—l))j —q,

i=1 j=i+l
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The eigenvectors of matrix A are given by the orthogonal column matrix S. If we define

Ri=S1 S;.....Sk= Ry.1Sk we can use the elements from the last step and determine the elements

of eigenvector:
(k) _ (k1) (k1) o
ry =T,  cos& —r, T sing,
ri;k) =rVsing, + rif]"‘l) cos 9, (3.2.22)
(k) _ (k1) ;
=1 pro j# p,q

On the beginning of the iteration Ry = E. The algorithm of the solution is in Tab. 3.3.
3.2.1.2 Symmatrisation of a matrix — Choleski algorithm

Jacobi’s method is applicable only for symmetric matrices. In mechanical systems

A =M 'K .This matrix is not symmetric even if matrices M and K are symmetric.
If we want to use Jacobi’s method it is necessary the matrix A change to symmetric one.
Because the mass matrix is positive definite, it can be factorized into a product of lower

triangular matrix L and its transposed counterpart:
M=L'L (3.2.23)

We use the Choleski triangularization algorithm. If the mass matrix is diagonal it must be

L=L"= diag[,/m[] a L'=LT"= diag{%:l (3.2.24)
mi
For the eigenproblem it is valid
M 'Kv = Av (3.2.25)
Substituting in this equation for M from (3.2.23) and define
v=L"y (3.2.26)

we get
L'L'KL'y = ALy

After multiplying this equation by matrix L it will be obtained :
L'KL'y =y (3.2.27)
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Tab. 3.3.Jacobi’s algorithm

Y

| QI=2*V(QUNN*(N-1))) |

Q2=Q1*10”

ne
S(A(P,Q)).GT or EQ}

ano

Pl =1

X9=(A(P,P)-A(Q,Q))/2

X9.EQ.0 >

Y8=-A(P,Q)/X9

| X8=0.5*ATN(Y8)]

38



]

A(P,Q=A(Q.P)

ne
@47 I.LEQ.P or .LEQ.Q
ano

X9=A(L,P)*C-A(L,Q)*S <
T B+ omoi @

A1,Q)=A(I,P)*s+A(I,Q)*C

<
v P=P+1 |4 @
A(LP) = X9
i ano

A(LP)=A(P.]) ?7
ALQ)=AQ,) QI=QI/N i%l.GT.Q2>

¢ #ne

X9=R(I,P)*C-R(I,Q)*S Q =1
I = gl
R(I,Q)=R(L,P)*S+R(L,Q)*C J=I+1

; ®
R(LP) = X9
¥ () —><aoniraos>

X9=A(L])
D i

X9=2*A(P,Q)*SC ALD=AQ.))
Y9=A(P,P)*C2+A(Q,Q)*S2-X9 A(J,J)=X9

v

A(Q,Q)=A(P,P)*S2+A(Q,Q)*C2+X9 Q
20

v

A(P,P) = Y9 X9=R(K,])

5 &
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O ©

A 4 A 4
R(K,)=R(K,J) I=1
>
\ 4
v A(LD, VALL)
R(K,J)=X9
l =1
<

K=K+1
G
\EED

<
()
=I+1
>
[=I+1 <—

vV

Because L'KL™ is symmetric it is possible to apply the Jacobi’s method. Because the
similarity transform was produced, the natural frequencies do not change. To obtain right

vectors it is necessary apply the transformation according (3.2.26).
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3.2 1 4 Reduction to tri-diagonal form — Householder’s method

Hauseholder’s method is e successive transformation method for reducing the initial matrix to
a tri-diagonal form in (n - 2) steps. Unlike Jacobi’s method, it implies a finite number of
transformations. Because of their low cost, tri-diagonalization methods are widely used for
solving moderate—size problems.
We aim to construct successive orthogonal transformation matrices Py, P»,..., P; so that the
matrix resulting from the 7" transformation:

A, =P/P/ ..P'AP .P_P =P'A_P (3.2.28)

takes the form

EXS
kkk
e
A =
0*****
skokoskoskosk
skokskokosk
-
7 columns

To do so, we consider elementary transformation
viv, =1 (3.2.29)
P, =E-2v,v, (3.2.30)
By definition, these are orthogonal and symmetric. The transformations are constructed so as
to leave the (k — 1) first rows and columns of Ay.; unchanged and to put to zero the non-
tridiagonal terms of line and column number k; This condition is fulfilled by equating to zero
the first k& terms off vi. We suppose that the vector vy has its first (k-1) elements equal to zero

v =[000... %% ] (3.231)

[ —

(k—1)

The task is now to determine the elements vy, to vk, so that must be valid (3.2.29) and (n — k)
non-tridiagonal elements in the row and column of matrix Ay are equal to zero. The

proceeding will be so, that we put

n

S=> a;, (3.2.32)

J=k
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V2, = %[1 t (a1, /NS (3.233)

v, =ta, (20 NS j=k+1ln (3.2.34)
We choose the sign in (3.2.33) and (3.2.34) so, that the solution will be most precise. Because
vkk 1n (3.2.34) is in the denominator it has to be as great as possible. Therefore we choose the
sign in (3.2.33) equal to the sign of ax.; x and the same sign will be used in (3.2.34). So is
given the principle of the solution. For maximum effectiveness we use the following
proceeding:
From (3.2.28) we determine
A, P =A, (E-2v,v]) (3.2.35)
We choose the notation w, = A, v, and we write
A, P =A_ -2w,v, (3.2.36)
We determine from (3.2.28)
A =P/A_P=A_ -2v,q —2q,v; (3.2.37)

where it is

3.2.1.5 Rayleigh’s quotient

Very often is sufficient to know only one natural frequency, usually the lowest one. We show

now how to do it. We start from equation (3.2.3)

Kv, =Q’Mv,
We multiply this equation from right hand side by vector v . Both sides of the equation are
then scalars and we may determine 4 , = Q’:

T
_ V.Kv,

1 =
vIMv,

I

(3.2.38)

v are the modal vectors of free non-damped vibration. In praxis the modal vectors v, are

judged so (3.2.38) obtains the form

— vVIKv
A =—t—r 3.2.39
TYMy, ( )
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Tab. 3.4 The algorithm of Householder’s method
@
I=1

Z=(1+SGN(A(K+1,K))*A(K+1,K)/S)/2

S=A(LK)"2+S

Ot >
yes no
@<-| K:K+1}<<S.EQ.(> I
| P(I,J)g\/(l)*\/(])
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PT(J,)=P(L] A=BMULTP

©

This equations determines so called Rayleigh’s quotient which has following properties:
1. Ifthe judged vector v, is judged with some accuracy the quotient is of one order more
accurate

2. Ifthe vector Vv, is equal to the exact value v, the Rayleigh’s quotient is equal to the
real value of the square of natural frequency €2,.

3. If the quotient reach the values of all modes, then it will be in the interval of accurate
natural frequencies.
If we multiply the nominator and denominator of the equation (3.2.38) ve may also write

A, = g—*’ (3.2.40)

Kr

E, is the unit kinetic energy of mode 7 (2; = 1)

3.2.2 Reduction of number of degree of freedom

If the mechanical system has many degree of freedom and we are not interesting about the
higher natural frequencies we reduce the number of freedom. Always must be satisfied the
condition that the natural frequencies have to be equal to the frequencies of the original
mechanical system. In next text we show two very often used methods of reduction.

3.2.2.1 Reduction by transformation of the mechanical model

This method uses step by step transformation of the mechanical model. Each system is

possible is possible to divide on a raw of separated parts of two kinds (Fig.3.9)
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01 ki ko (03} Q1 k 02
—> < > <4+—
M, M, M, M,
a) b)
Obr. 3.9

By free vibration transfer the elastic part of the mechanical system the torque M;. Therefore
we suppose that the system is loaded by external harmonic load in points 1 and 2..
The system a)
19+ k(o —@)+k,(9—9,)=0
k(o —p)=M,
ky(@, —p)=—-M,
We substitute the harmonic components ¢ = ¢, ', M, = M e, and from the second

equation we determine

MOl
kl

¢m :goml -

The previous set of equations obtains the form

_Ia)zwm +kl(¢m _¢m1)+k2(¢m _¢m2) = 0

(ky +k, — I’ )P, _klﬁgl -kp,,=0

(ky +k, — lo* NP, _TOI) -k, —k,,=0
1

We eliminate @p,

k, +k,

011

a)z_kﬂ’mz_ M01_1w2¢m1 =0

1 1

I k +k I
=(l-—o° M, (A2 - — "
¢m2 ( k2 )¢m1 01 ( k] k2 kl k2 )

Using the natural circular frequency of the system a)

o, - /k1 +k,
1

k,p,, +

we obtain
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1 1 1 ®*
=(1-—aw? —(—+9)1-——M
Py =( i, )P (k1 i, ) Qéa) 01

(3.2.41)

Iw®

M, =l10’p,, +(1- a

M,

1
The system b)

The equations of motion are

1§, +k(p,—9,) =M,
L,p, +k(p,—p)=M,

We suppose @, = ¢, e ”; M, =M,e . Then
~ 10’0, + k@, —9,,) = M,

_12w2¢m2 + k(P2 —@,1) = My,

From here

5 ®* I, ,
M022(11+12)a) 1_Q_2 P t 1_;(0 M,

0b

The natural frequency is given by

/I +1
Q,, = 2k
1112

Finally we get

(3.2.42)

2 w’ I, ,
Mozz(11+12)a) 1_Q2 2 1_;50 M,

0b

The principle of this method is in mutual transformation of one system by the second one.

The transformation of the system a) by the system b)

In this case is valid

l=l+i or k'= kiky
Kok k k +k,

(3.2.43)

Comparing terms by ¢, and My, we get
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I and I, = ky

I = P
Ttk k +k,

I (3.2.44)

The transformation of the system b) by the system a)

In this case it is
I"=1+1, (3.2.45)
Comparing (3.2.41) and (3.2.42) we get
pr=tt g g =l (3.2.46)

2 1

Using (3.2.43) and (3.2.44) the equations (3.2.42) obtain the form

I 1
¢m2:(1__a)2)¢m1 (_ —)M,,

k, kK,
5 (3.2.47)
2 w I
Mozzla) (I—Q—ga)le‘i‘(l—;la) )MOI
and using (3.2.45) and (3.2.46) will be
I o’
¢m2 = (1 _;(0 )¢ ( - Qz )MOI
0b (3.2.48)

I
M, = (1, +12)a)2(0m1 +(1_;20)2)M01

Comparing (3.2.47) with (3.2.41) we see that the difference is only in members (1 - g‘;’f ). Ifis

2 <2,5 the transformation is with sufficient accuracy. The process is shown on Fig. 3.10.

The algorithm is following:
1. We determine the subsystem with maximal natural frequency

I +1
D 0, = 0, =
172

1. We make the reduction of the system — change of subsystems:

a—ﬂ>k=4@13 I = h<LQ= k,
k +k, k +k, k +k,
I +1 I, +1

b—sa I"=1+1,, kl=-""2k ki=-"k
12 Il
The procedure repeats as long as we get the required number of degrees of freedom. The
advantage of this method is in objective. We know how the original system was changed.
However, it does not suit for systems with many degrees of freedom.
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1 L i

Obr. 3.10

3.2.2.2 Lanczos — Ojalvo method of reduction

The mechanical systems of high degree of freedom is better to use some method that works
automatically according a fixed algorithm. One of such method is Lanczos method. The
principle of this method consists of generating a subspace including the system fundamental
eigensolutions by inverse iteration on one starting vector.

Let we consider the equation

Kv = AMv (3.2.49)

The matrices are positive definite symmetric matrices of order n. Lanczos method reduce the

system so, that the chosen number m of calculated natural frequencies A = @” agrees with first

m numbers of the original system.
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Let we choose m < n and form the reduced matrix R = [r,] of order (n,m). r; are so called
Lanczos vectors of order (n,1). Then we define vector y (m,1) so that it is valid
v =Ry (3.2.50)
Substituting this equation into (3.2.49) we get
KRy = AMRYy

We multiply the equation from left hand side by transposed matrix R":

(R’KR)y = A(R"MR )y (3.2.51)
By this way is the problem reduced on the order . The reduced matrix R = [r,,r,,....,r, | will

be determined by using the Lanczos mechanism so that the matrix R"MR is a unit diagonal
matrix and matrix R"KR will be tri-diagonal. Then (3.2.51) is possible to write

R'KRy = 1y (3.2.52)
So the original problem is reduced on the problem of symmetric matrix, which is not only

reduced to the order m but more over is tri-diagonal.

The algorithm of Lanczos improved by Ojalvo is described:

1. The product M 'K is calculated

2. The judgement r, of the vector r; is done. It was proved that the best results are
obtained by using the generator of random numbers in the interval (0.1).

3. Now follows the calculation of vectors r,,r,,....,r,, in steps form 1 to m by following

procedure
4. ﬂiz = _ITMFI
5. 1, = % (By this step is made the normalization)
6. a,=r'Kr,

7. Fori=m one continue from step 13.
8. Fori=1:r,=M 'K —-ar,
fori>1(I=12,...,m-1) r,, =M 'K)r,—ar,— Br,
9. It will be performed the loop of orthogonalisation in steps s = 0 up to s. In these steps

will be made the correction of the vector ris;so that it will be orthogonal with vectors

I, ... s=0

i+l i+l—-j +1—j

i
10. 12} =1, - Z(r‘T M),
=
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11.Ifin the sumis r’

. MI, e thens =s + 1 and we go to the position 10.

e is the accuracy, for example 107

12. After successful loop (1, ;Mr, < &) we use for next calculation r,,, = r’' and we
continue from position 4
13. All vectors ry, ra,...., 'y, are determined. Simultaneously are determined the necessary
values ¢, §, fori= 1,2, ....,m, which are used to perform the matrix
a S 0
b a, B ’ 0
R'KR =
ﬁm—l amfl ﬂm
ﬂm am ]

14. The eigenvalues and aigenvectors using some standard method (Jacobi).
15. We determine the modal vector of the original matrix
v =Ry
A detailed analysis of the method shows that the convergence is extremely fast. Since
it is based on the inverse iteration process applied to only one starting vector, it can be applied

to very large systems with low cost and storage requirements.

3.2.3 Free damped vibrations

The vibration of a system with damping is described by the equation

Mq+Bq+Kq=0 (3.2.53)
The presence of the damping complicates considerably the solution of the problem and makes
it more difficult to understand dynamic system behaviour.
B is a square symmetric matrix of order n. The construction of this matrix is very difficult
because we do not know nor the arrangement of linear dampers nor its damping constancies.
Therefore we introduce the proportional damping described as a part of mass matrix and

stiffness matrix

B=oM+ K (3.2.54)
In this equation the term oM represents the external damping and 3K represents the internal

material damping. By proportional damping the rule of orthogonality is simple
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vIBv, =0 pro r#s (3.2.55)
Let us consider the conservative system associated with the real system. It is governed by the
equation of motion Mq + Kq =0 and its modal vectors are v, and €2,;.

Let us try as in the undamped case , to solve the system of equations (3.2.53) through modal

vectors v; of the associated conservative system

=Y C.e™'v 3.2.56
q . r ( )

Substituting (3.2.56) into (3.2.53) we get
MY 2C.e*'v, +BY 1,C.e*'v, +K> Ce*'v, =0

Let we multiply this equation from left hand side by v and use the conditions of

orthogonality:
C.(VIMV, A7 +V/Bv, A, +V/Kv,)e" =0 for r=12,..n (3.2.57)

Because the solution must be accepted for any time, the expression in brackets has to be zero.

We use the previous notation

—v7 : _ o7
m,=v.Mv k, =v Kv,

and the damping matrix B describe by (3.2.54) we obtain n independent equations

myrxlf +(am, + pk, A, +k, =0 (r=12,.,n) (3.2.58)
The roots of (3.2.58) are
(A4.),, =0, +iQ, (3.2.59)
In (3.2.59) means
om  + k.
0, = ”—'B‘ (3.2.60)
2m
yr
Q, =4/Qq, -6,
ko (3.2.61)
QOI’ = -
m

The general solution of (3.2.56) is
q=).(C,e™" +C,e™)v, (3.2.62)

If Q,, > O, the roots A\, will be a complex values and the resulting motion will be periodic

q=Y e (4, cosQt+B, sinQ 1)y, (3.2.63)
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q=)Y Ce'sin(Qt+9,)v, (3.2.64)

C

1r>

C2r; Ar’Br;Or Cr’¢r

are integration constants determined from initial conditions (q =q,,q, =q,)

The proportional coefficients o and (3 are determined experimentally. From (3.2.60) we get

| o
b, =—| —+

Because there are two unknowns two measurements must be made by two different natural
frequencies. Because the higher modes are difficult to excite we use other procedure. From
practice we know that extreme damping is by lowest frequency we put the derivative of the

last equation to zero.

Q. 2

db 1 o
. - +p4 (=0
( o ﬂJ

Now we can use this equation and one measurement by first natural frequency.

The coefficients are given by

a=Q,b,
b, (3.2.65)
B = o
or

3.2.4 Forced response of mechanical systems

In this case we suppose the equation of motion of the mechanical system
Mq +Bq+Kq =Q(?) (3.2.66)
We have a differential equation of second order with right said. The solution of it is composed
of the homogenous solution and a particular one
q=q, +q,
The homogenous part is given by (3.2.62), (3.2.63) or (3.2.64).

The particular solution depends of the character of the excited force.

3.2.4.1 The force is harmonic

By this excitation it is possible to solve many practical cases. We suppose the excited vector

of the force

Q(t)=Q,e™
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With respect to the harmonic right hand side of the equation we choose the particular solution
q, =8
After substituting in (3.2.66) we get
(K-o’M+ioBf = Q,
From this equation it is possible to get the complex vector §

5=(K-0M+ioB)'Q, (3.2.67)

It is necessary to keep in mind that we have to obtain the inverse of a complex matrix.
The inversion of it is

1 G(w)

(K-o’M+ioB) = o) (3.2.68)
Here is
G(®) = adj(K — ©°M + iwB)
A(w) = det(K — ©*M +iwB)
The real part of the response are given
S0 = J(RefE I + (M)} forr=1,2, ... (3.2.69)
The phase is given by
@, = arctg% forr=1,2,...,n (3.2.70)
The general solution can be written
q= Z[Cre_af’ sin(QQ, 1 +@,)v, +s,sin(wt +¢,,)] (3.2.71)
< ——

homogenous solution

The integration constants C; and ; are determined from the initial conditions.

3.2.4.2 Exciting force is a general function of time

Often the exciting force is a general function of time. The particular solution of the equation

(3.2.66) is supposed in the form
q, =Y v,.d,() (3.2.72)
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v; 1s the modal vector of the free not-damped vibration. di(t) is till now unknown function of

time. Substituting (3.2.72) into (3.2.66) we get
M v,d () +BY v d () +KD v.d ()= Q)
Multiplying this equation by v/ and using the conditions of orthogonality we obtain
vIMv.d (6)+Vv'Bv.d (t)+ V' Kv,d ()=v'Q(t) pror=12,..n
We divide the equation by the main mass m,, = v/Mv, and denote

T T T
_v,Bv, v Mva+v Ky /g

20, = = 3.2.73
" v/ My, v My, ( )
v/ Kv
Q) =1 3.2.74
0r VZMVV ( )

By this procedure we got n independent equations

T
d (t)+25.d (6)+Q%d (1) = %(t) pro r=12,..n (3.2.75)
v.Mv,

This solution of this equation is given by the Duhamel integral

T
\4

d,(t) = ——[Q(z)e” " sinQ, (t - 7)d7

r'tzr 0

We substitute this solution into (3.2.72) and we obtain the particular solution of (3.2.66)

T
V.V, =8, (t=7) o
=y —rr T)e sinQ (¢t —7)dr 3.2.76
q, EQ,vva,.IQ() [(t=17) ( )

In this equation it is
QV = Ngér - 5)‘2
The shown solution is valid also for the cases when oo =0 or 3 =0 or o= = 0. This solution

is useful when if the matrix of dynamic stiffness is singular and the inverse of it is not

possible. Equation (3.2.76) is possible to use also for a harmonic exciting force. In such a case

we substitute in (3.2.75) Q(¢) = Q,e" and the solution is supposed by
d, = sy sin(wt—9,.)
We substitute into (3.2.72):
q, = DV, sin(ar —,) (3.2.77)

The amplitude of harmonic response and phase is given by expressions
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1 VrTQo

Sop = (3.2.78)
Y@ -0t + (28,00 VMY,
20.0
=arctg——— 3.2.79
P, 0 o ( )

When we use the computer the solution of response is very simple and comfortable even for

the systems with extremely high number of degrees,

3.3 Vibrations of Continuous systems

So far, vibrating systems have been regarded as an assembly of discretized elements, namely
rigid elements with inertia as their only physical property, linked together by springs and or
dissipative elements, characterized by their stiffness and their damping coefficients but with
no inertia

The number of degrees of freedom of a discrete systems is fixed by its number of masses and
its mathematical model consists of a set of n coupled ordinary differential equations.

In practice, the representation of a physical system by a discrete model is usually an idealized
view. In most cases, the main bodies, which compose a mechanical system are deformable,
and the elastic elements which connect the main bodies has also their own inertia. Therefore
each constituent of a system possesses simultaneously inertia, stiffness and damping
properties. The mathematical model of a continuous system undergoing time dependent
deformation used in elastodynamics is then relevant.

In order to formulate the governing equations of a continuous system we will resort to the
theory of continuum mechanics where the equations of motion are expressed in terms of
displacement field together with the boundary conditions to be satistied. The space
coordinates x, y, z being continuous, the system so described possesses an infinity of degrees
of freedom.

In many cases, the specific geometry of the continuous bodies under investigation allows a
simplified formulation of the equations of motion in terms of one or two displacement
components, themselves functions of one or two space variables and time. Such situations,
which are often encountered in practice, will be treated after a general presentation of the

dynamic of continuous has been made.
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3.3.1 The longitudinal vibrations of bar

A simple element in technical practice is a bar. His longitudinal dimension is much more
greater as the transverse size. The next derivation are made on the bases of following
suppositions:

1. The bar is axial symmetric

2. Sections perpendicular to the axis remain plane and perpendicular to the axis after the

deformation

X dx
—><—ir
u u+—dx
—» X
ON
N N +—dx
4| — Oox
Fig. 3.11

3. The transverse deformations are neglected

From the bar we take out an element of length dx (Fig. 3.11)

We write the equation of motion of the element

ON o%u(x,t)

N+ N e - N = pddx 33.1
o PAB 5 331

The force in the bar is proportional to the strain

N = od = Eed = g M50
ox

E is the modulus of elasticity in tension (Yang modulus), p is the density of the material of the

bar, A is the cross section area of the bar.

If we express N the partial differential equation of motion is
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oO%u(x,t) _ 2 o%u(x,t)
ot’ ox’

(3.3.2)

We used the notation
c=_|— (3.3.3)

¢ represents the velocity of longitudinal waves propagation in the bar or by other words it is
the velocity of sound in the bar.
The partial differential equation we transform on an ordinary differential equation
introducing the product of two functions — one is a function of a position and the other one is
a function of time
u(x,t) =Ux)T(t)

Substituting this equation in (3.3.2) the partial differential equation changes in the ordinary
one:

d’T ,d’U

ar

We separate the variables and put each side to the same value

1d°’T  ,1dU 5
—— ===
T dt U dx

Two equations will be obtained

2
d—T+Q(2)T=O a
di

t2

2 QZ
‘;lj+_2<>U:0
X C

Both equations represents the harmonic solution

T(t) = D,cosQt + D,sinQt (3.3.4)

U(x) = C,cos px+ C,sin px (3.3.5)

p:&zﬂm/£ resp. Qozp\/E (3.3.6)
c E Y2

Integration constants C;. C; will be obtained from boundary conditions and constants

D, D, from initial conditions. The next solution depends on the arrangement of the bar.
The bar built in both sides (Fig. 3.12)

The boundary conditions are: for x =0 U(0) = 0. Substituting in (3.3.5) we get C; = 0.
On the other side x =/ is U(/) = 0 and from (3.3.5) will be
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Cysinpl=0
To fulfil this equation must be valid
pl=nx pro n=12,...,0

Substituting this expression we obtain from (3.3

Fig. 3.12

.6) the circular natural frequency

o -7 |E (3.3.7)

I \p
The deformation of the bar will be given by

the formula

u(x,t) = (AcosQ ¢ + Bsin QOnt)sin%x

n=1

The bar on one end built in and on the other end free (Fig. 3.13)

Fio 3 13

At the built in end the boundary condition gives

get C; =0;

At the free end the strain is equal to zero:
dU(l)
7=C2pcospl=0

x=0 — U(0)=0. From this condition we

In this case it must be for non-trivial solution (C, #0)

pl=

NN

Substituting in (3.3.6) we get
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_(2n=Dhrx
2/

Q

E
On N
~,0

The bar on both sides free

In this case the boundary condition is

x=0—>w20 odkud C, =0
dx
Forx=/ — %:—Clpcosplzo

For non-trivial solution is
pl=nr forn=1,2,...,0
The natural circular frequency will be

E

Yo,

_hr

QOn l

(3.3.8)

(3.3.9)

The bar on one side built in and on the other side loaded by point mass (Fig.3.14)

The boundary condition in the built in end is

ou(x,t)

Oox

u(x,t) = C, sin px(D, cosQ  t+D, sinQ ¢)

—EAC, pcos px(D, cosQt + D, sin Qt)

- S x=0—-U(0)=0—C;=0
i
XL ! The equation of motion has the form
|
i
|
1 : The force on the free end must be
: O%u(x,t)
~N=m——*=-FEA
¥ T " or?
Fig 3.14 Using equation of motion it will be
EAp cos pl = mQ; sin pl
From here we get
mQ.  m
cotgpl =—2 =— pl
gp EAp p

P

For m_ 1 we can obtain pl =1,456r, 37, 4,57r,....,37n7r,.... and then the natural circular

m,

frequency
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3 |E

On :7 p

Forced vibrations of a bar

We suppose a bar on one end built in an o the other side loaded by harmonic force (Fig.3.15)

At the fixed end of the bar the boundary condition is

x=0U(0)=0 — C,=0

The equation of motion will be

u(x,t) = C, sin pxsin wt

Fosinmt
| - S P B _
i
X, u X
4> —>
| u, = Upsinmt
< p
Fig. 3.15 Fig. 3.16

At the free end the boundary condition is

x=1 EAszosina)t
ox

After substituting
EAC,pcos pl = F,
From this equation it will be determined the integration constant

__ K
? EApcos pl

Equation of motion of general section of the bar is

F . .
u(x,t) = ——————sin pxsin ot
WAp cos pl

After substituting p =w/c we get

() =—0 in @ rsinar (3.3.10)

EAQcosQl ¢
c c
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The resonance arises if the denominator of (3.3.10) will be zero, also for

CrE 3 en-nE. .
c 272 2

The displacement of the free end is given by the equation

F, .
u(l,t)= Oa) tgglsma)t

EA” €
C

The free bar excited kinematicaly

We consider the bar at the Fig. 3.16. His left side is excited kinematicaly by a harmonic
function u, =u, sinwt . The solution is considered by the equation
u(x,t) = (C,cospx + C, sin px)sin ot
At the left hand side is the boundary condition
x=0 - Csinot=u,sinwt - C, =u,
At the right hand side is does not act a force, therefore the stress and also the strain are equal

to zero:

(8u(x, t)
ox

j =uylsin p/+C,pcos pl =0
x=[
From here we obtain
C, =u,tgpl
The equation of motion of a bar will be

u(x,t) = (u, cos px +u,tgpl sin px)sin ot

This equation is possible form on the following expression

coswl(l—xj
c /

cos—/
c

u(xt)= u, sin wt

From this shape is good seen the condition for resonance -cos—/ =0 and so
c

S L L T
¢ 272 2
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3.3.2 Torque vibrations of shafts

A shaft of circular cross section is a very used element in machinery. By solution of his
vibration we use the linear theory of elasticity. We consider prismatic shaft of circular cross

section from which we cut out an element (3.17) and write its equation of motion

oM O’ p(x,t)
'—'ﬁ—'— M &= —> M+AM% P
X >l dX» The torque is given by known expression from
Strength of material
Fig. 3.17 M:Gjpg—f

G is the modulus of shear, J, is the quadratic polar moment of a cross section of the shaft.

Using the expression for torque we get the equation of motion

2 2
g 0 so()zc,t) _0 (ﬂ(;f,t) (3.3.11)
ox Ot

We denoted the velocity of shear waves propagation in the shaft:

¢, = |— (3.3.12)

Equation of motion (3.3.11) is similar to (3.3.2). Therefore the solution of the equation will be
similar:

@(x,t) = (D, cos px + D, sin px)(¥, cosQt + ¥, sin Q) (3.3.13)

Q [ p
27 _ Ll 3.3.14
P c, G ( )

The determination of integration constants @, ®,, ¥, a ¥, will be provided from boundary

In this expression we used

and 1nitial conditions.

3.3.3 Bending vibrations of beams

Beams are such elements of a structure, which can be loaded not only by axial forces but also

by transversal load.

By derivation of equations of motion we suppose that
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The beam is straight

Transverse deformations are small

The vibration is in the plane given by an axis of the beam and one of the principle axis
of quadratic moment of the cross section

The planes perpendicular to the longitudinal axis of the beam remain plane and
perpendicular to the axis by vibration

Small displacements of shaft elements in the longitudinal direction are neglected

By the derivation of equations of motion we use Fig.3.18

The element makes a general plane motion. It is necessary to write the equation of motion

of the translation

The axis of the unloaded beam

l q(x,t)

\E

2
Q+‘Z—de _ 0+ q(x.0ydx = pa D 4
X

ot*

From here we get

oQ O’w(x,t)
—+q(x,t) = pA————= 3.3.15
a0 = pA (33.15)
The equation of motion of rotation of the element about the mass centre is
oM o’y
-——=] 3.3.16
Q ox o ( )
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In these equation is p the density of the material of the beam, 4 the cross section area, O

the shearing force, M the bending moment, w(x,t) the deflection of the beam, /, the
moment of inertia to the z — axis going through the mass centre, external continuous load
on the unit length of the beam.

The rotation of the element is composed of the rotation due to the shear and bending

ow(x,t)
ox

vty (3.3.17)

1is the rotation of the element (the slope of the deformed axis of the beam) given by

known expression

1Yy (3.3.18)
ox

J, 1s the quadratic moment of the cross section to the axis z. ~y is the shear of the cross

section
K
- 3.3.19
/4 AGQ ( )

k is the coefficient of shear deformation. From (3.3.17) we obtain

Lo
ox 4
After the first derivative with respect to x
v _dw oy
ox ox*  Ox
The bending moment from (3.3.18) will be
2
M=-r£s2Y Es%
ox ox
From (3.3.16) we get
2 3 2 3 2 3 2
0=1.2Y gy 0V gy 07y 0¥ OV gy 0w gy 07
ot ox ox OxOt ot ox ox

Substituting this equation in (3.3.15) and using the equation
yy Kk 0  « y o’w

o AG ox 467 o

we obtain the equation of motion of the vibrating beam
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o’w o'w o'w Kp O'w ko O'w

Y/ ) Sy L e LR oF s L

ot ox Ox" Ot G ot G oOx“ot
fﬁ%;f rotation effect of shear

=q(x,t) (3.3.20)

While the moment of inertia of the element I,=(1/12)Apdx’ is essentially then the other
terms it may be neglected. The effect of shear is by ordinary beams very small and is also

neglected. The equation (3.3.20) will be much more simple

2 4
T gy S — g (3:3.21)

For abbreviation of writing we will not use by moment of inertia and quadratic moment of

A

the cross section the index z.

3.3.3.1 The free vibrations of prismatic beam

In this chapter we consider the external load g(x,#) = 0.

he partial differential equation (3.3.21) we transfer to ordinary one by using

w(x,t) =W (x).T(¢t) (3.3.22)
Then we use the notation
1 JE ,J
—4 = — = Co _
n Ap A

o

c, = \/E is the velocity of bending wave propagation in the beam. After separation of
P

variables (3.3.21) becomes the form

L &T@0_ 1 dWx _

= -Q 3.3.23
T(t) dt’ n'wx) dx* ( )
From here
d’T@) |
+QT({)=0
e (1)
and its solution gives
T(t) = A cosQt+ A4,sinQt (3.3.24)
The next equation obtained from (3.3.23) is
4
d fo) — QW (x) = 0
dx

We introduce
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' =1'Q? nebo p=nJQ =1 %QZ (3.3.25)

and so

%— PW(x)=0 (3.3.26)
The solution of this equation is supposed in form
W(x) = Be™
When substituting the solution in (3.3.26) we obtain the characteristic equation
A-p*=0
The roots of this equation are
A=p; Ah=-p; A=ip; A4 =—ip
Using these roots we get the equation of motion
W (x) = B, sinh px + B, cosh px + B, sin px + B, cos px (3.3.27)
Substituting in (3.3.22) the equations (3.3.24) and (3.3.27)
w(x,t) = (B, sinh px + B, cosh px + B; sin px + B, cos px)(4, cosQt + A4,sinQ¢) (3.3.28)

The general solution will be obtained by linear combination of all modes
w(x,t) = Z(Bu cosh p,x + B,;sinh p,x + B;,sin p,x + B,; cos p,x)(A,, cosQ,t + 4,,sinQ.t)
i=1

(3.3.29)
The integration constants B;, B,, B3, Bs which determines the shape of the vibrating beam
we get from boundary conditions and the integration constants A; and A, from initial
conditions. In order to be liable to determine the integration constants Krylov function are
used, sometimes called Raylegh functions. These function are developed so, that one of
this function is for zero equal to one and the other functions vanish. These form of its is

following:
1
S(px) = E(cosh PX +COs px)
1 . .
T'(px) = —(sinh px + sin px)
21 (3.3.30)
U(px) = E(COSh PX —COS pX)

V(px) = %(sinh px —sin px)
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The next property is that its derivatives is possible obtain by cyclic exchange of the

previous function

S'(px) = pV(px); S"(px) = p°U(px); S"(px) = p’T(px)
T'(px) = pS(px); T"(px) = p*V (px); T"(px) = p’U(px)
U'(px) = pT(px); U"(px) = p*S(px); U"(px) = p'V (px)
V'(px) = pU(px); V"(px) = p°T(px); V"(px) = p*S(px)

(3.3.31)

From (3.3.30) we see that for x =0 1s S(0) = 1 and T(0) = U(0) = V(0) = 0. Using Krylov

functions (3.3.27) we can write in the form

W(x) = B,S(px)+ B,T(px)+ B,U(px) + B,V (px)

(3.3.32)

In these expressions they occurs hyperbolic functions, which reach by greater arguments

very large values. Therefore is introduced instead x the dimensionless value § = x//. If / is

the total length of the beam, € is in interval £ € (0,1) . When we use £ some previous

expressions will be changed

dW(x) _dw(&) ds _dw()1
dx  dé dx  dE ]

Similar

d'W(x) _d'wx) 1

dx* dét I
The equation (3.3.26) now is
d'W&) i
-pI'W()=0
i& pIrwS)

For next solutions we introduce

PA >
A=pl=1—Q
P EJ

2B
1>\ pA

The equation of motion is now

d'w()

a2z =AW(E)=0

Its solution is
W (&) = BS(A) + B,T(A5) + BU(AS) + B,V (AS)

Besides this equation we well need for the next solutions
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(3.3.34)

(3.3.35)



the slope of deflection curve

dVZ—f) = %[BIV(/M) + B,S(AE) + B,T(AE) + B,(AE)] (3.3.36)
The equation of bending moment
M(&) = A;((g) o Eljfz [BU(A&) + BV (AE) + B,S(AE) + B,T(AE)] (3.3.37)
The equation of shearing force
0(&) = ?((g o E‘l]f [BT(A&)+ B,U(AE) + BY (AE) + B,S(AE)] (3.3.38)

As an example we will solve the cantiliver beam shown in Fig.3.19.

At the built in side the boundary conditions are x =& =0 — W(0) = 0 and W'(0)=0.

From (3.3.35) is B; = 0 and from ((3.3.36) B, = 0. From (3.3.37) and (3.3.38) we get

B,S(A)+B,T(1) =0
BV (A)+B,S(A)=0

We received the system of two homogenous equations with unknown constants Bs B,. For

non-trivial solution must be the determinant of the system be zero:

X
SR S .
A) T
S S Ty _ S2(A) = T(AV (1) =0
X V(A) SA)
1
< >
YV w Substituting for S(A), T(A) a V()
Fig.3.19 from (3.3.31) is obtained

1+cosAcoshA =0

)

After numerical solution of this equation" we obtain the roots

A =0,59687; A, =1,49427; A, =2,50037; A, =(n-4z

When we use these roots we determine from (3.3.34) the natural frequencies. Using some of

An 1t 18 possible get the mode of vibrating beam

D1t is possible to use the method of half step, method of secants, Newton’s method or mathematical sw MAPLE
or MATLAB
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B, _ S(4,) _ cosh4, +cos4,

B, T(1) sinhA +sind
When we use \, = (n- 2)T we

coshA +cosA,
sinh A +sinA,

W,(&) =U(4,E) - V(4,8)

The shape of the modes is shown on Fig. 3.20

Wig
o

Fig. 3.20
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For different modes there exists places with zero displacement during the all time of

vibration. These places are called nodal point. Its number is N =n — 1, where » is the number

of mode. By similar way it is possible to solve other types of beams. The results are in

Tab.3.3.1

Tab. 3.3.1 The solution of basic types of beams.

Type of beam

boundary conditions

Characteristic equation

Roots of characteristic
equation

N

S

sinA—sinhA =0

A, =nr
W(0)=0 W(l) =
0
M(0)=0 M() =
0
| A =0,59687; A, =1,49427n
B 1+cosA—coshA =0 A, =(n-br
W(0)=0 M) =0
W’'(0)=0 Q=0
=
R
cosAcoshA—-1=0 A, =n+Hr
W(0)=0 W) =0
W’'(0)=0 w'(1) =0
I
3 tgA —tghl =0 Ay =+
h@
W(0)=0 W{1)=0
W'(0)=0 M) =0
I | cosAcoshA—-1=0 A, =+
M(0)=0 M(0)=0
Q=0 Q®=0

A |EJ
Q =—.—
7\ pA
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3.3.3.2 Bending vibration of beam excited by concentrated load

Let we consider excitation by a concentrated force F acting at the distance x; When we want

to use the equation (3.3.21) we consider the force continuously distributed on the length A

(Fig.3.21). The force is supposed as a harmonic function of time F' = F;sinwt .

X1 A A

Fig. 3.21

Equation of motion will be

2 4
pAa w(x,t) +EJ8 w(x,t)

e P =0,(x)F sinwt

01(x) is the Dirac function with following values

§l(x):l for x,<x<x +A

0,(x)=0 for x<x, and x>x+A

Fig. 3.22

(3.3.39)

This expression has the advantage that (3.3.39) is valid in the whole length of the beam. The

partial differential equation will be transferred on the ordinary one using the arrangement

w(x,t) = W(x)sin ot

Then will be

4 2
d ng) NS pA W(x) = F0,(x)
dx EJ EJ
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We use the notation

pA
:4_a)
P EJ

The previous equation can we write in the form

AW o~ B

3.3.40
dx* EJ ( )

We got ordinary differential equation of 4™ order with constant coefficients. Its solution

consists of the homogenous solution and a particular one:
W(x) = B,S(px)+ B,T(px)+ B,U(px)+ B,V (px) + ®(x) (3.3.41)

The particular solution will be determined, by using Duhamel integral

F X

DO(x) =——|6,(x)V|p(x —Xx)dx

(x) pml W [p(x-5)]

The determination of @(x) is reasonable only in the interval x, < x < x, + A. In such case is

X +A 1

O(x) = |

Vlp-9)ds = —

=y PGl

PE] YA

In the case when the beam is loaded by external bending moment it is possible to replace the
moment by a couple and each of these distributed forces by its resultant . The Dirac function

obtains the shape

§z(x)=§ pro x, Sx<x +A
§z(x)=—§ pro x, +A<x<x +2A
0,(x)=0 pro x<x, a x>x +2A

Particular solution will express the equation

Ml
p°EJ

O(x) = -U[p(x—x)]

(3.3.41) obtains the form

h -
PTG

M, ~
gy Ulper= )]

W(x) = B\S(px) + BT (px) + BU(px) + B,V (px) +

72



(3.3.42)

The last two members of the right hand side enter into the determination of the deflection of
the beam behind the place of action of external load. If on the beam the point mass is placed

then the force F'; will be replaced by the expression
F =mQ’W(x,) (3.3.43)
When we use the dimensionless parameter E=x// (3.3.43) gets the form

K
PEJ

W(S) = BiS(AS) + B,T(AS) + By (A5) + B,(Ag) + rag-&)l+

M, ~
g Ui -é)]

(3.3.44)
A=pl

3.3.3.3 The method of transfer matrices

This method stay on the fact, that all needed parameters of the beam is possible to determine

from the parameters on the beginning of the beam ( x = 0 or £ = 0). From equations (3.3.35),

(3.3.36), (3.3.37) and (3.3.38) is possible to determine the integration constants:

[ > M(0 00
B=WO) B = WO = o =SS0

By using of these integration constants we determine the parameters in the section of the

beam
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(&) = w565+ ) -0 U8 - QO (26)+
e 51)] ML [/1(5 §1>]
& =Lworae o -1 g L0y .
L vl - M rfage - ;]
~u@="Ewowes X woyas -uosas -2 s -
L1l - )l MslaE - &)
—Q(cf)—“" WO (AE)+ m WO~ MO (35) - 00)3(26) +

A
+ES[ﬂ(f—fl)]JrTMlV[ﬂ(f—51)] (3.3.45)

The last two terms in each of the previous equations are equal to zero for & < ¢&,. The

equations (3.3.45) is possible to write in matrix form.

We define the status vector at the beginning of i section

s, =[w.w'-M,-Qf

1]

and the status vector on the end of the i section, which is also the status vector at the

beginning of 7 + 1 section

=w.w.-m.-0f

i+1

We define the transfer matrix P;. By using of it we determine the status vector on the

beginning of the / + 1 section

s, =Ps. (3.3.46)

i+l i~

While the end of one section is ever the beginning point of the next section it is define the

value on the end of # + 1 section

—PP_P _,. . Pgs, (3.3.47)

n~ n-l1
or

S, = PS, (3.3.48)

n+l

The resultant transfer matrix is given by the product of transfer matrices all sections
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(3.3.49)

The transfer matrix is square of order 4, because the status vector is also of order 4. By

multiplication of transfer matrices arise always the square matrix of order 4. This is advantage

of this method and the calculation is possible by using PC. The next advantage is in the fact,

that we can easy built the computational model of a set of beams with any support , with

variable stiffness and cross section as well as statically indeterminate. The only disadvantage

is, that by multiplication of many transfer matrices it can occur the numerical instability.

By application, the set of beans is divided on sections, each with constant geometrical, mass,

stiffness and force parameters. Any section may be arbitrary short and so define the section

with concentrated force, concentrated moment, point mass, etc. We show the transfer marices

for some types of beam sections.

Prismatic beam of length [ (Fig. 3.23)

i+1
< >
Fig. 3.23
] -
S(A 172 Ui
(4) 2T () /12EJ()
y) !
Zv(a S(A T2
Z() (A) /IEJ()
ya y)
FEUQ) TEVQR) S()
3 2
-%wﬂ@ %EWM) %w@

V(A
fﬂ/()
12
JEJ

!
—T()

U(4)

S(1)
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Rigid mass point (Fig.3.24)

The rigid mass point changes the shear force of the value am = —Q>*Wm . The transfer matrix

of this case will be

1 00 0
0 100

P = (3.3.51)
0 010
mQ> 0 0 1

Rigid mass with moment of inertia

This case is similar to the case shown in Fig.3.24 but in position i + 1 will change also the

moment of the value — Q*WT . The transfer matrix is

10 00
p| O 1 00 (3.3.52)
Tlo Q7 10

mQ> 0 0 1

Elastic support with stiffness coefficient k (Fig. 3.25)

At the end of the section will be changes
the shear force of the value AW

1 000
01 00
P = (3.3.52)
0 x 10
k 00 01

i
Fig. 3.25

The elastic hinge with the stiffness coefficient &

In the section will the bending moment of the value —«xW":
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(3.3.53)

S R =~ O
S = O O
—_ o O O

As example we solve a cantilever beam of variable cross section (Fig.3.26), which can be a
model of turbine blade. We divide the beam on prismatic sections. The lengths /; of each

section may be different. The transfer matrix of each section is given by the equation (3.3.50)

The length /;, value \;, quadratic moment of the cross section Ji. Yang modulus £ and density

p are in all sections equal. The resultant transfer matrix will be determined from (3.349). We

consider the boundary conditions: at fixed end W(0) =0, W'(O) = 0. At the freeend M =0 a
Q = 0. We will write symbolic

W,., Py P Pz Pu 0
W4'+1 _ Py Py Py Py 0
Py Pn Py Pu || =M,
Py Pu Pi Pull =9

0
0

pij are elements of the resultant transfer matrix. The matrix

notation represent 4 equations, which will have the form

Wi +0+0+ psM,+ p 0, =0
0+ W, +0+pyM,+p, 0, =0
0+0+0+ p M, + p,, 0, =0
0+0+0+p, M, +p,0,=0

The system of equations is homogenous. Therefore for the non-trivial solution must be the
determinant of the system equal to zero: Because the 3™ column contain only 0 it must not be

taken into account and the determinant will be

10 py py
0 1 py py —0
0 0 py py
0 0 py pu

After evaluation of the determinant we get

D33P4s — P3aPa3 =0
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By the solution of this equation we get the natural circular frequency of the beam and after

that the modes of vibrations.
3.3.3.4 The influence of rotational inertia and the shear

As far all solutions were provided by using of the simplified equation of motion (3.3.21).
The differences between this solution and the exact solution given by (3.3.20) shows the Fig.
3.27. On the vertical axis is the ratio of the exact solution to the simplified solution. On the

horizontal axis is the ratio of the length of the beam to the radius of the quadratic moment of

. . :
the cross section j = \/; .. From the figure is seen that greater differences occur by very short

and high beams.
1.0
] [ I B -
—
////
yd ~ —
—
2
0.8 =
// //
—
2 _—
c
E e 1- Viiv smyk. deform.
/ 1 influence of shear
0.6 2 influence of rot.inertia
0.4
0 10 20 30 40 50
I/j
Fig. 3.27
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3.3.4 Vibration of membranes

A membrane is a skin which is stretched with a tension and which has no bending stiffness

whatever. It is considered as two-dimensional mechanical system.

Let we consider that the membrane is stretched in all direction by relative tension N (force per

unit length). The relative mass of membrane is g (mass per unit surface ). The Fig. 3.28 is

shown the cutting through an element of a membrane.

y
X

> Similar cutting is possible imagine

to imagine by the plane yz.

V4 w

ow

a_wSI Vo
ax: dx —»

8—W szzvdx
ox Ox
Q\;
N(G_W+ﬁvdx)
& o
Fig. 3.28

We can write the equation of motion

2 2 2
N a—W+8V2Vabc dy+N a—w+av2vdy de—N| Py 2 :qudyazv
ox Ox oy 0 Ox ay o

After arrangement of this equation e get

2 2 2
N(@ w+6 wqua w

(3.3.54)

(3.3.55)

x> oy’ or’
82 2
It is possible to use Laplace operator V> = P + P and we can write (3.3.54) in the form
X v
2
NV*w(x, y,t) —q% =0
4

We suppose harmonic vibration
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w(x, y,t) =W (x,y)sin Qt

After substituting in (3.3.55)

g’ W (x,y)+ NV W (x,y)=0 (3.3.56)

The solution of this equation depends on the boundary conditions.

5.3.4.1 Rectangular membrane

Let we consider that the membrane is created by axes x, y and the straight lines parallel with

0 »  them(x =/ y = b) Fig. 3.29
X
.On the circumference of the membrane the
deflection are zero
b
w(0,y) =0; w(x,0)=0; w(l,y)=0; w(x,b)=0
< > We chose the solution that suit to these
boundary conditions:
v / Ty
y W, (%, ) = cm?m% (ij=1,2,..,00)
Fig . 3.29

The second derivatives of these equations wit respect to x and y will be

2 2 2 . . 22
o'w i'mt . imx . jmy i'm

= Sin Sin = w
ox’ I? / b I?
2 22 . . 22
81;1):—j72[ Sinlﬂ-xSin‘]ﬂ-y:—jZ[ w
oy b ! b b

After substituting in (3.3.56) we get

l-27z_2 -271_2

The circular natural frequencies are calculated from this equation

.2 .2
o, :gﬂz (;—2+2—2J for i,j=1,2,..,0 (3.3.57)

The general solution is
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w(x, y,t) = ZZsm by(A cosQ, 1+ B, sin€), t) (3.3.58)

i=l j=1

or

w(x, y,t) = ZZ s1n—s1nﬂz7ysm(§2 t+¢)lj) (3.3.59)

i=l j=0

By vibration of membranes are important the nodal lines — the places in which the

displacement are in any time equal to zero. From (3.3.58) or (3.3.59) that it will be if

a2 i-l
iti
y =2 2—b,....,J—_'1b
JoJ J

The nodal lines divides the membrane i*j same parts (Fig.3.30)

i=1, j=1 i=2, j=1 i=1,j=2 i=3, j=2

Fig. 3.30

.The nodal lines have not to be only a lines parallel to sides of a membrane.
Let we consider a square membrane (b = /) and suppose the mode of vibration i =1, = 2.

(3.3.59) will be
. 2 .7 . T . 27 :
w(x,t)=| A4 s1n(7 X) sm(7 v)+B s1n(7 X) s1n(7 y) |sin(Qt+ ;) =0
The nodal lines does not depend on time. After arrangement of this equation we get

. T . T V2 7
sin—xsin—y| cos—x+Acos—y |=0
/ / [ [ [ ]

where is A=—
A

This condition is fulfilled if
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sin%x =0, resp. sin%y =0
or

cos%x+/1cos%y =0

The first condition gives the nodal lines parallel to sides of the membrane, the results of the

second condition depend on \. If X = -1 the equation of the line is y = x (Fig.3.31a), if =1

the equation of the line is y = -x (Fig.3.31b). If X\ =-2 the shape of nodal line is given by the

equation cos% = 2c0s%y (Fig.3.31c).

a) b) c)
Fio 331

3.3.4.2 Circular membranes

We consider a circular membrane of radius R. It is advantageous to use polar coordinates
X =rcos9
y=rsin$

The Laplace operator has in polar coordinates the form

o’ 10 18

Vi=—+ +—
or* ror r'o%

The equation of motion (3.3.55) in polar coordinates is

2 2 2
N(a_+li+1 0 ]W(r,lgjt)_q%ﬂ (3.3.60)

or* ror r_26192

We divide this equation by ¢g and use
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(3.3.60) changes to

azw(r,&’,t)_vz 8_2+l£+i 0’
ot? or* ror r*og

]w(r, 9,t)

We transform this partial differential equation to an ordinary one using for deflection

following expression
w(r, 8,0 =T (39 (1)

The ordinary differential equation is

25 2 2— 2 20
1d%7 v[dr ldF] v d*9 (3.361)

— [ 4+

tdt* T \dr’ rdr) r’$d%
Because the right hand side of the equation is independent must be also the left hand side time
independent. We put both sides of (3.3.61) to -Q¢*. Then it is

d’t

dt?

+QF =0

We obtained the differential equation of harmonic motion
t =CcosQyt+ Dsin Q¢

In (3.3.61) must be for axial symmetrical membrane the term

constant and by its solution we get
9 = Acosnd+ Bsinn9

Substituting this value in (3.3.61) we obtain

2
)y V
Q=

+_
rldrr rdr P

[d27 1@]_##

When we use

f=220
1%
r d Z +ri+(k2r2—n2)r =0
dr dr
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This equation is known as Bessel equation and its solution is

7

EJ (kr)+ FY, (kr)

Here E, F are constants and J,(kr) and Y,(kr) are Bessel function of first an second art.

The deformation of circular membrane is given by the expression

w=(Acosnd+ Bsinnd)(CcosQyt+ DsinQt)(EJ, (kr)+ FY, (kr)) (3.3.62)
While the Bessel function Y,(0) = co F = 0 and (3.3.62) obtains the form

w=(A4cosnd+ Bsinnd)(Ccos Qyt + DsinQt) EJ, (kr) (3.3.63)

If the vibration is symmetric to the axis of the membrane » = 0 and (3.3.63) is possible to

simplifies
w=(CcosQt+DsinQt)J, (kr)

The Bessel function has the value

7 )= (;:') [1_ (ix) (4)

From here we obtain

Jo(x) =1—(%xj + Go)° o

22
1 (Ex)’ @)
J(x)=—x—1—"—+-1—"——
() =g
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Tab. 3.3.2 Natural frequencies and nodal lines of circular membrane

Qom Nodal lines
2,405 |N
R \gq

Circumference
of the circle

3,832 [N n=1
q

5,136 |N

~
|
=
I

6,380 [N n:31 .
T — m: N e
R q \\://
*
z 1N
BAE RN
7,016 [N

q

=
B =
o
o —

If on the beginning the membrane is in quietness the constant D = 0 and the solution obtains

the form

w=C, cos(Qy,1)J, (kr) (3.3.64)

m=l1

The vibration will be periodic with period 7 = 27
0m

and natural circular frequency is

1 [N
Q= ;Jo(ka) (3.3.65)

The nodal lines are obtained from the condition w = 0. Some cases shows the Tab.3.3.2
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3.3.5 Bending vibrations of thin plates

The objective of this section is to introduce the concept of the solution of thin plates and to
analyze their free vibration behaviour.
The assumptions adopted generalize to two dimensional object are:

1. The plane is thin with thickness / and possesses a mean plane. The external layers of

the plane are the planes z =114

2. Only the transverse displacement is considered
3. The stress o in the transverse direction is zero. Indeed, it must vanish on the external

layers and, since the plane is thin, it is natural to assume that it vanishes for all z

4. The cross section initially normal to the mean plane, remain plane and orthogonal to it,
implying that the transverse shear strain is neglected

5. The normal stresses in the mean plane are zero

Let we consider an element of the plate dimensions dx, dy and thickness / loaded according

the Fig. 3.32

Fig. 3.32

All forces and moments are considered relative to the unit area.

The equation of transverse motion of the element describes the expression

a 2
99, dxdy + %9 dxdy = phdxdy M
ox oy ot
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from which we get

a 2
00, 30, _ ,0n(xy.0)
ox Oy ot

(3.3.66)
Equation of motion of rotation about axis x is

M oM 1 82¢
Y dxdy ——2 dxdy — O, dxdy = — ph(dx)’ dy —==
> xdy 5 xdy — Q, dxdy lzp(x}yat2

The order of term on the right hand side of the equation is twice smaller and we neglect it.

oM, oM,
- -0, =0 (3.3.67)
oy Ox g
By similar way we obtain equation of rotation about the axis y
oM
oM, -0.=0 (3.3.68)
ox oy )

The internal moments and forces are described by expressions [5]:

2 2
M :_D(a oo vt) | 0 w(x,y,t)]

o’ oy’
2 2
v —_pl@ w(x,zy,t) W@ W(x,zy,f) (3.3.69)
y ay ox
O’ w(x, ,t)
M =-M _=D(1-uy)——=
Xy yx ( ﬂ) axay
o*w(x, y,t) O w(x, y,1)
— | 2B g A
Qx [ ax3 ( ﬂ) ﬁxayz

_ _ aSW(xayat) _ 83W(X,y,t)
0,= D[ & +(2-p) —5)62@)/ j

D is the bending stiffness given by formula

3
po B
12(1-u7)

w is Poisson number . Substituting (3.3.69) into (3.3.66), (3.3.67) and (3.3.68) we obtain after

(3.3.70)

editing

2 2 2 2 2
O O[Oy Pwoyn)) ph w0 (3.3.71)
ox~ Oy Ox oy D ot

When Laplace operator will be used then
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_phOw(x,y.1)

VViw(x, y,t) = Viw(x, y,t) =
(x, y,1) (x, y,1) D o

(3.3.72)
Next solution of these equations depend on the form of a plate and on boundary conditions.

3.3.5.1 Bending vibrations of rectangular plate

Analytical solution of plate is possible only for some types of supports. The solution is
possible always, when two opposite edges are hinged. The other edges may be supported

arbitrary. Let we show the solution of some cases.

Rectangular plate with all sides simply supported

The schema is shown on the Fig. 3.33. The deflection of the plate will be composed of the
term depending on the position x, y and a term depending on the time:

w(x, y,t) =W (x, y)e™
The mode of vibrations must satisfy equation (3.3.72). After substituting the previous term we

get

X ny
2 > I D
b
v | ﬁ
i
< >
.

NS S\

Fig. 3.33
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VW (x,y)= %hQZW(x, ) (3.3.73)

The Laplace operator of 4™ order is given by formula

4 4 4
_OW(x,y) +28 W(x,y) N O'W(x,y)

Vi (x,
o) =5 ot | oy
2 2
The boundary conditions are: forx=0andx =/is W=0; M = —D(% Vz/ +u (2 VZ] =0
X v
fory=0andy=>bis W=0; M =-D 82W+ ow =0
y y » M, P H o
For W(x,y) we choose such function which satisfied (3.3.73) as well as the boundary
conditions
W(x,y)= Csin(mTﬁx)sin(%yj form=1,2,...0 and n=1,2,...,0 (3.3.74)
We substitute (3.3.74) in (3.3.73) and get the natural circular frequency
2 2
Q, =" | |2 (3.3.75)
’ © b ph
The deflection of plate will be given by linear combination of all solutions
w(x,y,t) = Z (Am’n cosQ), t+B,  sin Qm,nt) sin mTﬁx sin %y (3.3.76)
m=1 n=1
or
wxy,0)= 23 (C,, sin(@, i + gom,n))sin?xsin% y (3.3.77)
m=1 n=1

The nodal lines satisfied the condition w = 0:

N SV U

. 5ee
m m m n n n

The nodal lines are in this case the same as by rectangular membrane.

Rectangular plate on two sides hinged and on other sides fixed

This case is shown in Fig 3.34. We consider the particular solution in the form
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¥ o
> R
b
< >
v 1
i
H
Fig. 3.34
W(x,y)=C, X (x) sin% y (3.3.78)
Substituting (3.3.78) in (3.3.66) we obtain
d‘'Xx _m'z>d’X
X 5 a4
o4 o (3.3.79)
H 2Pl |x=0
b D
The solution is considered X = Ae™* and after substitution in (3.3.79) we obtain characteristic
equation
2™ g [m phe )
b2 b4 D m,n
m’r’ ph
From here A = e +Q, o
We plot on
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By using of these terms we can write
A=r; Ay =—r; A, =is; A, =—is
These values we substitute in (3.3.79). The solution gives

X = 4, coshrx+ 4, sinh rx + 4; cos sx + A4, sin sx (3.3.80)

The boundary conditions for supposed plate are

x=0a x=[: X=0; C;—X =0. From these boundary conditions we get:
x

A+4,=0 and A,r+A,s=0
Equation (3.3.80) now will be

X (x) = 4, (coshrx—cos sx)+ 4, (sinh rx—Lsin sxj
s

When x = [ and denote R=r/ and S=s/ we obtain

A (cosh R—cosS)+ 4, (sinhR—gsin S] =0
. (3.3.81)
4 (sinhR+EsinSj+A2 (coshR—cosS) =0

We obtained two homogenous equations for 4; and A4, For non-trivial solution the

determinant of the system must be zero. From this requirement we obtain

2 2

sinh RsinS =0

2(1-cosh Rcos S) +

From this equation we obtain the natural circular frequencies
2 2 2 2
aQ, =">* DK +2S L (3.3.82)
’ 2 ph 21 ph

Rectangular plate on three sides simply supported and on the forth side clamped

This case shoves the Fig. 3.35. The deformation gives the equations (3.3.78) and (3.3.79).

The boundary conditions are

d*X(x) _

x=0— X(x)=0 and > 0
X

From here the integrations constants are 4| = 43 = 0 and the equation (3.3.79) obtains the

form

X(x) = A4, sinhrx+ 4, sin sx
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At the clamped edge x =1 — X (/) =0; @ =0 and we obtain two equations
X

A,sinhR+A4,sin§=0

4, coshR+A4%cosS:O

Fig. 3.35

We use the condition of non-trivial solution and from the determinate of the system we get the
solution

S'sinh RcosS —RcoshRsinS =0

From this equation we determine the natural circular frequency

Rectangular plate on two opposite edges simply supported on two other edges free

Scheme of this case is shown on the Fig. 3.36.Determination of deflection will be calculated
by using of equation (3.3.78). The boundary conditions we use at x =0 and x = /. In these
positions is valid

M, (0,y)=M(l,y)=0

0.(0,»=0.(y)=0
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From (3.3.69) we obtain

d*X mr’ mr
-DC | —-2—-w)X sin—y=0
( T mX— j P4

m,n

X dX m*7*\ . mr
-DC -2-p)— sin—y =0
( e 2-p) PR j e

The expressions in brackets must be zero, because the conditions are valid for any y:

d’*Xx m*r?
_ X=0
PR
d’X m’z* dX
_(2- @ o
PR R,

By using (3.3.80) it is possible to express

x o~
> _ﬁ"\
b
/
< >
v
y
| |
Fig. 3.36
, m'r
r—u )
4, = — A = a4,
) mr
SHH S
2_2
e T
A, == A, =4,
S 5 m°r
N _(2_/'1) b2

When we use these expressions the deflection of the plate is given

X (x) = 4, (coshrx+a cos sx)+ A, (sinh rx + Ssin sx)

Now we use the condition at x = /. We use again R = r/ and § = s/
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2 2 2 _2
4 Hrz—,umbf jcoshR—a(s2+,umbf jcosS}r
2 2 2 2
+/12Kr2—ymbzZ jsinhR—,B[s2+ymbf ]sinS}:O

2

2 2_2
4 {r[rz—(Z—,u)m i }sinhR+sa[sz+(2—,u)m i :|Sil'lS}+

b’ b’
2_2

+A2{{r2—(2—y)m i

bZ

2_2
e }coshR—sﬁ{serQ—,u)m z }COSS}:O

From the frequency determinant we determine » and s and after that the natural circular

frequencies. (The solution will be provided by some mathematical sw).

3.3.5.2 Vibrations of circular plates

We suppose circular plate with diameter R and thickness 4. It is useful introduce polar

coordinates. The equation (3.3.72) obtains the form

2 2 2
[a 10,10 J w(r,s):”’g2 w(r, 9) (3.3.83)

o ror rog

We make the second root of (3.3.83)

> 10 10 [ph
T ,9)=1Q, [— ,9 3.3.84
(8}’2 ror r’ OSZ]W(F ) D . 9) ( )

Equation (3.3.83) is fulfilled if is fulfilled one of (3.3.84). Equation of natural mode of

vibrations is possible to express by

w, ,(r9) = { A,,J, (im,n %) +B,,J, (mm,n %ﬂ sin(m3+¢, ) (3.3.85)

2
A= R;‘/ph—Q (3.3.86)
D

We determine natural circular frequency €2, and App.

Here we introduced

The plate clamped at circumference has the boundary conditions

ow(R, 9)
v

r=R;w(R,93)=0; =0 and from (3.3.85) we get
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A, S (A )+ B, T (i4,,)=0

m,n* m m,n* m

oJ (A oJ (i (3.3.87)
m( m,n)+B m(l m,n) —

m,n m,n 0

or or

A
(3.3.87) enables determine amplitude ratio —*. In case when m = n = 0 Ay, = 3,2 and from

m,n

(3.3.86) it is possible determine natural circular frequency
A |D 32" |D
Q = —2 _— - 2 > —
R \ph R \ ph

3.4 Approximation of continuous system

Among the problems of elastodynamics governed by a system of partial differential equations,
some of which have been considered in the previous chapters, very few have a closed-form
solution which simultaneously verifies the differential equations and the boundary conditions

3.4.1 Rayleigh mthod

We know that Rayleigh quotient is given as the ratio of potential and unit kinetic energy

A= = Lrmn (3.4.1)

s

K max
By this method we can take in the solution the influence of mass points placed on linear
continues and the influence of elastic supports. We bring in following part the expressions of
potential and unit kinetic energy of continues defined in previous chapter.

Longitudinal vibrating bar:

E, = %Ej- A(x)U"* (x)dx (3.4.2)
0
-1 1L
E, :El.A(x)pUz(x)dx+E;ij2(xj) (3.4.3)
Torsionale vibrating shafft:
E, :%Gij (X)D" (x)dx (3.4.4)
0
1 1¢
E. = o ! J, (x)CDZ(x)dx-FE;Ijq)z(xj) (3.4.5)
Bending vibrating beam: |
E,= %E;[J(x)W"z(x)dx+%;ksz(xj) (3.4.6)
E, = %pj; A(x)Wz(x)der%JZ::ijz(xj) (3.4.7)

Vibrating rectangular membrane:
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E, _%N'EJ-{{GW(x,y)} +[8W(§;c,y)} }dxdy (3.4.8)

ox
« 1 <

E, :561” w?2(x, y)dxdy+2ij2(xjyj) (3.4.9)

P j
Vibrating circular membrane
2 2
E,==N[[ [M} ; %{M} rd Sdr (3.4.10)
2 or r 09

E :%qHWz(r,S)rder+ZMsz(rj,Sj) (3.4.11)

p J=1

Vibrating Rectangular plate

W) W[
1 ox’ oy
E, =—D” - rdxdy (3.4.12)
2 a1 | D@D PW ) (W (x.y)
a ox’ oy’ oxoy
* 1 [
E. = Ephﬁ W?(x,y)dxdy + Z ijz(xj, y;) (3.4.13)
A J=1
Vibrating circular plate
1 Hawn T 1 [dW(r)T 1L dW (r) d*W(r)
E,=—D||——| +—=|———| +2u— d 3.4.14
) ;[{ ar’ } P dr H rodr dr’ e ( )
R D S
Ey =2 ph j W2 (r)rdr (3.4.15)

These expressions are valid for axial symmetric circular plate.
Rayleigh quotient gives exact values when exact modes are used. We put in the expressions of
potential and kinetic energy supposed mode, which must satisfy the boundary conditions of
supports. Very good results are obtained when the static deformations are used. From all
introduced expressions it is seen that gives the possibility to solve the problems with variable
cross sections.
Let we show this method on the cantilever beam with constant high and variable width from
by at the clamped side to zero at the free end (Fig. 3.37).The cross section of the beam is given

A(x) = byh (1 —ﬂ

The quadratic moment of the cross section is

1 X
J(x)=—hb,h’| 1-=
(x) 120 ( lj

The deflection curve we suppose parabolic
W(x)=ax’
Potential energy will be calculated from (3.4.6):
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/
E, =3 Ebyh I =
0
=L Ebh’a’l
) X > Unit kinetic energy gives (3.4.7)
!
Ey =4 phyhda’ [(1-3) x'dx = & pbyha’l’

by by 0

After substituting the necessary
values in (3.4.1) we obtain the natural
/ frequency

E, _pEbRQl _ ER

Ey  &pbhdl p It

= Q=2 236—\/7
Fig. 3.37

As the second case we consider the rectangular plate clamped at all sides (Fig. 3.38).
At first we must choose such function for
5 deflection of plate, which satisfies the
boundary conditions. At clamped edges
must be deflection and slope equal to zero:
X(x)=x"+ax +a,x*
We determine the constants a; and a, so that
R the boundary condition is satisfied also for
x=1I
X()=P+al’+al* =0

< ’ 'S dx ()

< > QO =

=3a,l* +4a,l’ =0
dx
From here we determine the constants

1 Ve

Fig. 3.38
2 |
a, = ~7 and a, = l—zUsmg these constants

the course of deflection will be given by equations
2 1 e 2 2 5 1 4
X(x)=x"-=xX +— YO) =y —y +—
() =x"—ox +7x )=y =7y 3y
The general deflection of the plate is given by following equation

2 5 1 ) 2 51 4j
w(x, X ==X +—x -——V +—=
(x,») = ( TR j(y [V Y
The shape of the deflection of the plate according this equation shows Fig. 3.39
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Fig. 3.39

Potential energy is according the equation (3.4.12)

1 ¢t 12 12 2 1 2 1 12 12 ?
EP :EDJ.J.|:(2—7X+Z_2X'2)(J/2_Zy3+?y4j+(xz—7x3+l_2x4j(2_7y+l_2y2j:| dXdy:

o0
= Lbz(%“ +41°0> +71%)
11025
The unit kinetic energy with respect (3.4.13) is
1 2 1 2 1 phb’l°
E.=—ph||(x* -2 +=x")V (" ==y +—= ") dxdy =
K7pP H( [ ) A = 2o
After substitution in (3.3.88) we obtain
4 272 4
= RO DT - O hay ravr i |2
b*lI" ph I°b ph

3.4.2 The Rit; method

Ritz method is based on the fact that Rayleigh quotient is in the interval of exact natural
frequencies. Therefore the natural mode minimizes the Rayleigh quotient. Therefore one
approximates natural mode by linear combination of independent functions which satisfy

boundary conditions. For two dimensional continuum it will be

W(x,y)=afi(x,y)+a, f,(x, ¥) +...+a,f,(x,y) (3.4.16)
That’s mean the Rayleigh quotient will be a function of independent parameters
A= Ef = Ma,,a,,...,a,)
EK

The minima of these values are given by n conditions

or_ 0 Ef :i(EP—QZE;) for/=1,2,....n (3.4.17)
Oa, Oa,\ E; ) O0aq,

1
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By this way » homogenous equation are obtained. For non-trivial solution the determinant of
the system must be zero. Because this determinant is of n stage n natural frequencies are

obtained Q, <Q, <....<Q . Like by all analytical methods the Ritz method is possible use

only by conservative systems. The advantage is in the fact that we didn’t need construct the
equation of motion. Only the geometrical boundary conditions are sufficient,

We show the application on the determination of first two natural frequencies of the prismatic
beam built in both ends.

We propose the function, which satisfies geometrical boundary condition in the form
W(x)=ax’(I-x) +a,x(I-x)
This function satisfies the conditions W (0) =W ([)=W'(0)=W'(l) = 0. We determine the

potential energy from (3.3.93):

/
=1F. j[2al (I-x)* =8a,x(I-x)+2a,x” +6a,x(I - x)’ —18a,x* (I — x)* + 6a,x* (I - )C)J2 dx =
' %EJ(4 P+ L2aa)l +3—25a§l9)
By similar way we determine from (3.3.94) kinetic energy

1
E, = %pAI[alxz (I—x)* +a,x’(l —x)ﬂ2 dx ==%,0A(690 all’ + - aa,l" +mazl‘3)
0

Substituting in (3.3.104) we get after derivation two equations
Pl ($E) 5 Apl*Q ), +(& EJP — 55 Apl*Q? ) a, | =0
U] (4 B —5 ApI'Q* ) a + (3 EJP — 5z 4pl°Q% ) a, | =0

We expanse the frequency determinant

83952
5

A p* PO ———ZEJApl*Q’ +8154432E°J* =0

And from here we get the natural frequencies

22,374 |EJ 127,632 [EJ
Q =— — and Q, = > —
) pA / pA

The exact solution gives

Ql:22,220 EJ and Q, 1202,90 EJ
[ pA / pA

We see, when calculated by Ritz method 1% and 3™ natural circular frequency with mistakes

0,78% and 5,57%. Much more greater is reached by determination of shear forces and
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bending moments while the base function are only geometric and force boundary conditions

are not used. In these cases the mistakes are more than 100%.

3.3.6.3 The finite element method

A complete volume should be dedicated to a systematic statement of the finite element
method. It is thus not our objective to make complete presentation of it here (it will be done in
Computational mechanics I1.). Our purpose is simply to show its potential and mode of
application in the context of dynamics of continuous systems. Therefore this discussion will
be limited to the case of the bar in extension and the beam in bending.

The finite element method may be regarded as a particular application procedure of the Ritz
method. It consists in subdividing the deformable body or the structure into a finite number of
elements of simply geometry well identified structural behaviour (bar, beam, membrane,
plate, shell, 3-D solid, etc.).

The interpolation functions are chosen in order to fulfil the following requirements:

1. Interpolation is performed in terms of piecewise continuous functions. Inside each
element, the displacement field is represented by a superposition of small number of
functions, which are chosen to be simple but representative of the element’s structural
behaviour in the global structure. They are generally of polynomial type.

2. These functions are also chosen in such a way that their intensity parameters, which
are the generalized coordinates of the Ritz method, are local values of the
displacement field in the structure.

If both conditions are strictly satisfied, the approximation obtained is kinematically
admissible in the sense of the Ritz method. Indeed, the displacement field is then integrable
over each element domain and imposing equal values of the generalized coordinates at

element interface allows us to keep the continuity of the displacement field at the global level.

3.3.6.3.1 The bar in extension

a. Generation of a bar element

Let as consider the case of a bar in extension possibly subjected to distributed load p(¢). The
bar is divided into N elements of length / as sketched in Fig. 3.40. The displacement field in

the element is linearly interpolated by the formula
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u(x,t)=U,(x)T;(t) +U,(x)T,(¢) (3.4.18)

element

SR

(1) pxo)  T,(0)
N O
— > >

RO |l L PO

Fig. 3. 40

where are

L), (t)eeu... the connector degrees of freedom are the axial displacements at both
ends, also called nodes;

U,(x),U,(x).... arethe shape functions of the element, chosen in such a way that
u(0,0)=T(t) u(l,))=T,(t)
If no internal parameter is introduced, they result from a linear
interpolation
Ul(x)=1—§ Uz(x)=§ (3.4.19)
Equation (3.3.105) may be put in matrix form
u(x,t)=N,(x)q(?) x € (element e) (3.4.20)
where

N, () =[U,(x) U,(x)] .......... is the shape function matrix of element e

qa =[O LO] ... is the set of degrees of freedom of element e

We may then determine successively

- the element kinetic energy and strain energy as quadratic forms of the mass and stiffness

elementary matrices
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E, = %ngeqe and E,, = %qZKeqe (3.4.21)
Here is
/ l T
M, = [mNNdx K, =[E4 N, dN, 4 (3.4.22)
0 dx dx
- the virtual work of external forces in the form
W, =-5q,8,(t) (3.4.23)

g (?) is the generalized load conjugated to displacements q,(¢)
’ R()
)= N p(x,t)dx+| 3.4.24
g.(1) I Lp(x,0) {Pz(t) (3.4.24)
The first term results from the discretization of the load per unit length and the second
one contains the end loads of the element. The latter are themselves made of two

contributions: The reaction forces with adjacent elements and the eventual external

loads.
For the bar element of uniform characteristics modeled using linear interpolation functions,

we obtain elementary stiffness and mass matrices

1 -l 2 1
K -4 Y L (3.4.25)
I -1 1 61 2

and the discretized force vector representing a uniform load p per unit length over the

M _ pll
-2

Summing the elements of the mass matrix restores the total mass of the element:
Z M, =ml
k,s

Hamilton’s principle may be expressed in the form

element

(3.4.26)

5![ quqe ——quqejdt+5qege =0

b. Assembly process

In order to express dynamic equilibrium for the global system with N elements having N+1

nodal displacement we suppose
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q = [uo Uy Uy ... uN] (3.4.27)
q,=L_q (3.4.28)

where the localization operator L. is a Boolean matrix in our case with dimension 2*(N+1)

and containing only 1 and 0 terms. For instance, for elements 1 and 2 :
0000......0 0100....0
L = L, =
‘ {0100 ....... O} 2 {0010 ...... O}
By summing all the elements of the system, the structural variational equation becomes

L N I N

1. |
5I (E :qu—EQZqujdHIZ 5q.g,dt=0 (3.4.29)

tl e=l1 tl e=l

This equation ma be expressed in terms of structural displacements through substitution of

((3.4.28) into (3.4.29)

15} N N ) N
5 {%qT (ZLCMeLejq—%qT (ZLZKeLeJq}df +[od (ZLTegej‘” =0 (3430
" e=1 e=] 4

e=1

We then define
- The mass matrix of the assembled system, or structural mass matrix
M = ﬁ:LQMeLe (3.4.31)
=)
- the structural stiffness matrix
K= ﬁ:LTeKeLe (3.4.32)
)

- the structural load vector

N

g= ZLTege (3.4.33)

=
It is important that expressions (3.4.31) — (3.4.33) correspond to a formal representation of the
assembly operation. In practice, structural assembly may be performed much more simply, by
addressing correctly the matrices K. and M. in the structural matrices K and M (Fig.3.41).
It is observed that:
e The shaded zone corresponds to the clamped end of the bar and must then be
wiped out.
e The diagonal mass and stiffness terms ad two by two on the diagonal of the
structural matrix.
e Owing to the system topology and the sequential numbering of the degrees of

freedom, both K and M have tridiagonal form
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element 1 up (fixed)
element 2 u
element 3 U
element N-1 UN-1
element N Un

Fig. 3.41

When all finite elements have the same length / =%, one obtain for the clamped free bar

. ]
1221 0
12 -
7
! 0
12 -
L _1 2_
(3.434)
L _
|4
m=mh b4 b0
61 0
141
L 1 2_

For the structural load vector g, the assembly operation (3.3.120) corresponds to the sum of
each node of the contributions of the connecting elements. The reaction forces between
elements are eliminated by the assembly process. The forces applied externally are the only
ones to remain in the structural load vector g. The discretized structural equation of motion is
in the usual form

Mq +Kq =g(?)
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Taking into account equations (3.4.33) the dynamic equilibrium equation at node

J,(0< j< N) is found to have a general form

ml .. . EA
?(uj_1 +Aii i)+ e (u; +4u,+u,,)=g,) (3.4.35)

3.3.6.3.2 Bending vibration of beams

Let we consider the case of a beam represented in Fig. 3.42, excited by distributed load p(x, ).

7 aat T
T—F

. .>
/
I ’ L
¢ P
zZ, w v
A A
Wi V\lbl W2 2 5—7
o }»
0 -/ 1
Fig. 3.42

The potential strain energy will be obtained by integration over the beam element

! 2 2
0" w(x,t)
E,, = IEJ(—J dx
0

ox’
the function w(x,t) and its first derivative must be continuous. Therefore, to obtain a finite
element approximation of pure displacement type in the Ritz sense, the interpolation of the
bending deflection must be at least cubic in order to maintain continuity of the deflection w

and slope y =2 through nodal identification. The connectors of the element are the

. . . : x
deflection and slope values at both ends. In terms of the non dimensional variable & = 7 over

the element domain, the cubic approximation to the deflection may be written in the form
w(S) = WN, (&) + ¥ N, (5) + Wy N3 (6) + Y, Ny (6) = N, (5)q. () (3.4.36)

Ni(§) are the shape functions and they are the third-order Hermitian polynomials, matching

the conditions
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N(0) =1 N(©)=0 ND=N(1=0 Ny(S)=N(1-)

) , , (3.4.37)
N,(0)=0 N, (0)=1 N,(D)=N,(1)=0 N,(&)=-N,(1-¢)
Here was used N =4t . In this manner we obtain the matrix of shape functions
1-3&2 428
IEQ-EY
NI (&)= 6:( 2 (3.4.38)
¢ (3-29)
1E(&-1)
associated with the element degrees of freedom
q =[w v, w, v,] (3.4.39)
One computes successively
e The kinetic energy of the element
B, =5 dM.g, (3.4.40)
with the elementary mass matrix
1
Im(f)Nf(f)Ne(f)ldf (3.4.41)
0
e The potential strain energy of the element
1
E,.=54:Kq, (3.4.42)
with the elementary stiffness matrix
‘ d®N Y (d*N ) dé
K, = j EJ(§)( e ] ( e j—3 (3.4.43)
0 dé dé )1
e The virtual work of external loads
SW, =-6q,8,(t) (3.4.44)
with the vector of external loads
1
g.()=[ N[(&)p(x0ldé (3.4.45)
0

For an element of uniform characteristics solicited by a constant distributed load py we

explicitly obtain
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12 6 -12 6l

EJ| 6/ 41> -61 2I*
TP |12 -6l 12 6l
6 20 —61 4

K

(3.4.46)

156 221 54 -13]
ml | 221 4 131 -3

T 40| 54 131 156 221
131 =31 -221 4

g =21 4 1 -]

It is easily verified that the quadratic form q"Mgq is equal to the translation inertia m/ for

T

q

q" =[-

[I 0 1 0],and to the rotary inertia 2L about the centre of mass for

141

|~

4. DIRECT INTEGRATION METHODS

Many numerical integration methods are used for the approximate solution of equation of
motion or sets of such equations. A complete coverage of numerical integration methods is
beyond the scope of this book and the student is referred to many available textbooks on the
subject [],[],[].. In this chapter we discuss some widely used step-by-step numerical
integration schemes for linear and nonlinear dynamic analysis.

In a direct integration methods the equations are integrated successively using a step-by-step
numerical integration procedure. The direct integration method implies that no transformation
of the equations into a different form is carried out prior to integration. In direct integration
methods, time derivatives are generally approximated using difference formulas involving one
or more increments of time. There are two basic approaches used in the direct integration
methods - explicit and implicit. In an explicit formulation the response quantities are
expressed in terms of previously determined values of displacement, velocity, or acceleration.
In an implicit formulation, the temporal difference equations are combined with the equations

of motion.and displacements are calculated directly by solving these equations.

4.1 Explicit methods
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4.1.1 Central difference method

We consider a displacement-time history curve shown in Fig. 4.1.

AY By this method we work with finite differences
— instead of derivatives
— ]
] L —
dt M0 At
If the curve is continuous with small change of
Vi-1 Yi Yirl slope, the solution is enough accurate even by
A A greater time intervals.
t t
The velocity in the middle of the time interval Ais
X > ‘
Fig. 4.1 given by
(). %)
- | Yin = Vi _Vi™Vin
dt dt -
dzy _ tﬁ% ti_% _ At At _ Vi _2yi +Via (4 1 2)
i’ ] At - At - N .
t=t,

Substituting (4.1.1) and (4.1.2) into the equation of motion
Mq+Bq+Kq=Q,

we obtain

UQine — 2qt + ! Y L N PN
M +B +Kq,=Q, 4.1.3
AVE 2At 4=Q ( )

This equation is possible arrange to the form

1 1 2 1 1
M+—B|q,.,=0Q —|K-——-M|q,—|—M-—B|q,,, (414
[Aﬂ 2A¢ ]q”A Q [ Ar? ]q [At2 2A¢ ]q : (414

We can denote

! mi-Llg (_):Qt—[K 2 M]q,—[ ! M—LB]qt_At (4.1.5)

A= 2 - 2 2
At 2At At At 2A¢

Using these equations we can calculate the displacement in the time ¢ + At

q., =A"'Q, (4.1.6)
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And from previous equations also the velocity and acceleration by using displacements in

time 7 and ¢ - At. In next step we put t =¢+At,q, ., =q,, q, =(q,,, and we determine

again displacement, velocity and acceleration.

Thus, to obtain the solution at the beginning of the procedure a special starting procedure is

needed, because we have not the value gy, . We rewrite the equations (4.1.1) and (4.1.2)

2q0At =dorn —Do_ar
4AL =qq, 5 +2q, + 94,

The values qp and q’ are given by initial conditions. From both equations we exclude qo.- ¢

and we get
. l..
Qoo = Qo + A28, AL

Acceleration q, we determine from the equation of motion:

4, =M 'Q,-Bq, —Kq,
Substituting in the previous equation we get

At*

o, a = 9o + 4, A7+ M'Q, —Bg, —Kq, 4.1.7)

After this starting step the solution continues according the original procedure.

The local truncation error of the difference formulas used in this method is of the order

At* Time step for linear dynamic analysis is limited by the highest frequency of the system

(i.e., Q_ ) such that

max

0,2
Q

max

At < (4.2.8)

When At does not satisfy this equation a spurious growth of the solution occurs. This is
known as the numerical instability. For dynamic analysis, (4.2.8) is the necessary and
sufficient condition for the stability of the central difference method.

4.1.2 Two- cycles iteration method

The incremental form of equation of motion at any time ¢ is expressed
MAq=AQ,-KAq,—BAq (4.2.9)

In the first iteration cycle, increments in velocities and displacements are estimated using the

following formulas
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For first time step
Aq, = Atq, ,, (4.2.10)
For other time step
AqQ, =248, —Aq,
q, =9, +Aq, 4.2.11)

At . :
Aqt = 7 (qtht + qt)

Increments of acceleration are evaluated, by substituting the relations (4.2.10) and (4.2.11)
in (4.2.9)
Aq, =M '(AQ, —KAq, —BAq,)

) ) (4.2.12)
q, =4, 5 TAq,

In the second iteration cycle, increments in the velocities and accelerations are determined as

follows:

. At .
Aqt = _(qt—At + qt)

2

q, =9, +Aq, (4.2.13)
At . .

Aq, =— (4, ar4,)

The relations from (4.2.13) are substituted in (4.2.12) to calculate the new increments in the

accelerations. These are then used in (4.2.12) to evaluate accelerations at time .

4.2.3 Runge-Kutta methods

In this method, the system equations are replaced in state —variables form, that is both

displacements and velocities are replaced as unknowns defined by

q

X=|.

q

The equation of motion is now rewritten as
§=M'Kq—M 'B4—M 'Q()

Using the identity

both equations are written as
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ol o

i T|-M'K —-M'B M 'Q()
or
x=Dx+Q"(¢)
or more schematic
x = f(x(),1) (4.2.15)

In Runge-Kutta method, an approximation to X,,,, is obtained from X, in such a way that the

t+At
power series expansion of the approximation coincides, up to terms of a certain order (Af)"
in the time interval Az, with the actual Taylor series expansion of ((¢ + At) in powers of Az.

However, the method is self-starting and also has the advantage that no initial values are
needed beyond the prescribed values.

For simple writing we will consider the system with one degree of freedom.

We consider that the function (4.2.15) about the point exists and is unique in the interval

At about the point. The Taylor series expansion of the solutions yields

M+ A8 = x,, , = x(0)+ Ati(r) (A; )’ (A;' )+ 4.2.16)
Since we consider x = f(x(¢),t) = f and further differentiation yields
8f 8f dx
)= t+ x
x(1) = Yo dr =/ + 1

Similarly
XWO) = fy+2f+ S+ [+ 1)

Substituting these results in (4.2.16), we obtain

(At) (At) [

Xt + A1) = x(O) + Atf +==(f, + [+ [ + 20, fo 4 [+ 1]+ (42.17)

It has been also assumed in the following that the higher derivatives and partial derivatives
exist at point required. The simplest of the Runge-Kutta method is the first order method, also
known as Euler method, which retains only the first two terms of the Taylor series expansion.
Hence, in the Euler method, the approximation to the solution is given by

x(t+ At) = x(t) + Atf (x(2),1) (4.2.18)
The results are reasonably accurate only for the first few time steps with small At. After that

the approximation usually diverges from the actual solution.
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The general idea behind the higher order Runge-Kutta methods is to retain the higher order
terms in (4.2.17). However, the method does not require evaluation of the derivatives of the
function f. Instead, approximations are obtained at the expense of several evaluations of the
function f'at each time step.

The solution can also be written in the integral form

X(t+ A = x(t) + f F(r), TYdT (4.2.19)

Application of the mean value theorem of integral calculus to (4.2.19) yields

x(t+ At) = x(t) + Atf (x(t + aAt),t + aAt) (4.2.20)
for some « such that O<a<1. The problem is now to avoid the evaluation of explicit higher

derivatives required in (4.2.17) and in the expansion of (4.2.20).

4.2.3.1 Second order Runge —Kutta method

Here, o is chosen so that Taylor series expansion of (4.2.20) agrees exactly with (4.2.17) up

to terms of order (At)®. Letting x(¢ + a/Ar) = x(¢) 4+ BA¢ ..., the Taylor series expansion of
(4.2.20) gives
x(t+ Af) = x(t) + Atf +a(At) £, + B(Ar) f. (4.2.21)

Comparing (4.2.21) with (4.2.17) when only terms of order (At)* are retained , we obtain
1
= = —
& 2

Hence, in second order Runge-Kutta method, the approximation to the solution is given by

At

x(t+ At) = x(t)+ Atf | x(¢t) + % f(x(t),t+ 5 (4.2.22)

In the algorithm of numerical solution is advantageous to use the following practice
At the time ¢, is known x(t,)=x, and we solve
k= At.f(x,1,)
ky = At f(x, + k1) + At) (4.2.23)

k
x(t, + At) = x, +31+k2

112



4.2.3.2 Fourth order Runge — Kutta method

To obtain good accuracy, the commonly employed method is the fourth order Runge-Kutta

method. Again, to avoid the evaluation of explicit higher order derivatives, we set

k= At.f (x,1,)
kl
k,=At.f x—{—2,tl—|—
L (4.2.24)
ky :Azf[x +—2,zl + ]
k, = Atf(x, + ks t, + At)
By using of these coefficients we get
1
x(t, + At) = x(t,) —i-g(kl +2k, + 2k, + k,) (4.2.25)

The first and second order Runge — Kutta methods are hardly ever employed because the
results that they yield are not very accurate. Hence, if a Runge-Kutta method is chosen as the
integration technique, it is usually the fourth and higher order method.
The truncation error e, for the fourth order is of the form

e=k(At)
where k depends on the f{¢, x) and its higher order partial derivatives. Since the Runge-Kutta
method is an explicit method, the maximum time step is usually governed by stability
considerations. The method can be considered as an inherently stable method, since the
change in time step can be easily implemented at any stage of the advance calculation.
The principal disadvantage consists in the fact that each forward step requires several

evaluations of the functions. This increases considerable the time and cost of computation.

4.2 Implicit methods
From all implicit methods we show three of them.
4.2.1 Houbolt method

This method is based on a third order interpolation of displacements. In the Houbolt
integration scheme, multistep implicit formulas for velocity and acceleration are derived in

terms of displacements using backward differences. With references to Fig. 4.2 we can write
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At AP

9 = Grone —AIG 5 Til}w - T'C?}w | (-8) |(-27) (4.2.1a)
. (2A1)” .. (2At) ...
9i-ne = Grine — 2Alqt+At + (+At 6 t+At (4.2.1b)
: GAan' .. (A’ ..
Qo260 = Drvne _3AZQz+At +TQ[+At _th'+At - (4.2.1¢)

Solving equations (4.2.1 a, b, ¢) for ¢,,,, and g,,, interms of ¢,,,,.q,,q, , We obtain the

following formulas:

.. 1
9iine = At2 (2%+At _qu + 4%—Az - Qz—ZAt) (4.2.2)
q.t+At = L(1 1qz+At _lng + 9qt—At - zqz—zAz ) (4.2.3)
6At
A

i

Jt-2at  Qt-at qt Jt+at

>
At |At|At )
>
Fig. 4.2
The same form of equations is in matrix form:
. 1
! v _2(2ql+At - Sqt + 4qt—At ! Yy ) (4.2.4)

At
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: 1
Qrin = @(1 1qt+At _18qt + 9qt—At - 2qt—2At ) (4.2.5)

Substituting (4.2.4) and (4.2.5) into the equation of motion we obtain

1
M— At P (2qt+Az _qu + 4qt—At —q, ) +

1
+B @(1 lqt+At -1 8qt + 9qt—At - 2qt—2At ) + th+At = Qt+At

We arrange this equation in the form:

At? O6At A At

4 3 1 1 (4.2.6)
+£M Y 2Atth_m B [M 7P th_m ~ Qe

At 3At
We denote the effective mass matrix M and effective force vector Q,,,,

(ML+B£+K)qHN (Mi-i-iqut +

( 2 M+£B+K) (4.2.7)
Af? 6A

5 3
Qz+At :Qt+At (A ) M+—B )qt -

2At
4 3 | 1 (4.2.8)
—|—M+ M+—-
(Aﬂ 2At jq’ A (At 3At jq”“
Now it is possible determine the displacement
qt+At = M_IGH—AI (429)

It can be noticed that in the Houbolt method, calculation of q,,,, involves displacements at
t,t—At, t—2At . Therefore a special starting procedure is required to obtain solution at time

At and 2 At . The method also requires large computer storage to store displacements for two

previous time steps.

4.2.2 Wilson theta method

In the Wilson theta method, it is assumed that the acceleration varies linearly over an

increment of time 9A¢, where $>1,0 as shown in Fig. 4.3.
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/' The dynamic system remains constant
/ during the interval. If 7 is the time
) ) ) increase between ¢ and ¢+ 9A¢, then
K 1 Trvons for the time interval ¢ to ¢+ 9Af, it is
p  assumed that
T > 1
At —»
Fig. 4.3
.q.f"rlgAf - qt '—gAt .e .o T .o .o
= = 4., =9+t (qt+3Al - %)
s " 4.2.10
4iv: — 4, 4 VAY ( )
Integrating (4.2.10) we obtain
qt-H' T T
_[ %qu = I%dz— + (CI:+.9A1 —q, )deT
. ) 9At )
q;
e =+ 7+ 2l 1)
t+1 t t IA? t+8At t (4.2.11)
After the next integration
. 3
_ . qt 2 T .. ..
9dir =94, 4,7+ ZT + 69A; (qt+9At - qt) (4.2.12)
Substituting 7 = 9A¢ into (4.2.11) and (4.2.12)
we obtain following expression at time ¢+ 9A¢ :
: L 9AL .. .
Grvone =9 T Qt'gAt + T(thrBAt -4, ) (4.2.13)
.. 2
. q , (A .. ..
Gyoon =94, +9,90+ ?t (FAD)” + (%wm -9, ) (4.2.14)
From these equations we obtain
. 3 . §9A
Dvone = 7\ rvon =49, ) =24, —
oM T g A ( 1+9At t ) t 7 (4.2.15)
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. 6 6g .
- — -t
q:9n (19At)2 (qt+9At q, ) 9At 4, (4.2.16)

Equations (4.2.15) and (4.2.16) are solved for ¢,,,, and g,,,, interms of g, 4, as

: 3 . g9\t
Givone = E(QHSN — 4, ) —2¢, —= 5 (4.2.17)
. 6 6g .
- —g)——_»
9,90 (LQAZ‘)z (QI+|9AI q, ) 9Af 4q, (4.2.18)

The difference formulas in the Wilson theta algorithm are then given by

3 i, 9A?

Qogn = E(qmmt -q,)-2q, - N (4.2.19)
6 6q, .
! IV W(quAt —q, ) B IA? —2q, (4.2.20)

We consider the equation of motion at time ¢+ 9A¢ to obtain solution for the displacements,

velocities and acceleration at time 7 + A¢. Since the acceleration vary linearly, a linearly

projected force vector is used such that

Mdm—SAt + Bqt+9At + th+3At = QH—SAt (422 1)

where

Qz+3Az = Qt + ‘9(Qt+At - Qt)
Substituting (4.2.19) and (4.2.20) into (4.2.21), we obtain

6 3 6 3
(192A12 M+ l9Al‘ls+l(th+l%t =Qt+3At +(192At2 M+ ngl‘B)qt +
6 AL (4.2.22)
+| —M+2B |q, +| 2ZM+—B |q
PrARE Y T
We express the effective mass matrix M and effective force vector (_)t+ oA
— 6 3
M=——-M+ B+K (4.2.23)
G At At
— 6 3 6 . At ..
Qt+9At = Qt+9At + [ 192Al2 M + 9AL B)qx + (EM + 2qut + (ZM + TBJ q, (4224)
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By using of these equations we obtain

Qo =M7'Q,. 4, (4.2.25)

The solution (4.2.25) yields q,, 4,, , Which is then substituted in the following equations to

obtain accelerations, velocities and displacements at ¢ + At:

6 6 3
Qon == (Ao — 4, )~ —— 4, +| 1-= i 4.2.26
qt+At 193At2 (qt+9At qt ) zngt qt ( Lgth ( )
. . At .
4. =4 +7(qt+At +qt) (4227)
. AP .
Qi =9, t+ Atqt +?(qt+At + th) (4228)

The method is proven to be unconditionally stable for values ¢ >1,37 for linear dynamic

systems, but a value of 1,5 is often used for nonlinear problems. An anomaly of this method is

that equilibrium is never satisfied at time ¢ + Az.

4.2.3 Newmark beta method

The Newmark integration method can be treated as an extension of the linear integration

scheme. The method uses parameters o and 3, which can be changed to suit the requirements

of the problem at hand. The equations used are given
qt+At = qt + [(1 - C()qt + athrAt ] At (4229)
o =4, + QA+ (5= B)d, + Bl | (A2)° (4.2.30)

o and 3 are parameters which are determined to obtain integration accuracy and stability. The

effect of these parameters is the change the form of the variation of acceleration during the

time interval At:

o= 5 and =0 the acceleration is constant and equal to ¢, during each time interval At
1 1 .. o ..
a= ) and p = 3 the acceleration is constant from the beginning as ¢, and then changes to

d..,, atthe middle of the time interval At
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a=— and f= p3 the acceleration varies linearly from ¢, to ¢,,,,

1 : : .
a=— and f= 2 the acceleration remains constant at an average value of (¢, +¢,,,,)/2

The difference formulas in the Newmark beta algorithm are

Lo R e
qt+Ax_ﬂAt2(qx+At qt) ﬂAl‘qt [2,8 qut (4231)
- % —a )=l E 1 la —Adl Z e
qHAt_ﬂAl(qHAt qt) {ﬂ qut At(zﬂth (4232)

Substituting (4.2.31) and (4.2.32) into the equation of motion at time ¢ + At

MdHAt + BqHAt + th+At = Qt+At

We express the effective mass and effective force vector:

L M+ % BiK (4.2.33)
BN A

— 1 a 1 a
Q.. :QM,+H——le+At(——ljB}jt+[—M+(——1JB}(’L+
2h 2h pat P (4.2.34)
+( ! > M+LB]q,
PAt LAt

By using of these formulas it is possible to determine

qt+At = MilQHAt (4235)

(4.2.35) yields q,,,, which is then substituted in (4.2.31) and (4.2.32) to obtain velocities and

M=

accelerations at ¢t + At.

The important features of this method are that for linear systems the amplitude of mode is

conserved, and the response is unconditionally stable provided that & >4 and

£ >0,25(a +0,5)° .However, the o =1 and [ =+ give the largest truncation error in the

frequency of the response.

5. TUNING OF MECHANICAL SYSTEMS
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The process changing the masses and stiffness of mechanical systems to obtain the required
natural frequencies and natural modes, is called tuning of mechanical systems.

For simplicity we will consider free non damped mechanical system described by its mass,
stiffness and geometrical parameters. These elements generate vector of tuning parameters or

tuned vector.
pT = |:pl’p2""’psp:|

The eigenvalues A, = Q. and natural vectors, normed by mass matrix, expresses vector of
tuned parameters

I =[Q.05,....QLv.v,....v] |
Usually, we do not change all elements of the tuned vector but only some of them. In such

case is defined the selecting vector j= [ ji] of order k < n. The selecting vector determine the

elements of tuning vector to them we specify certain values. So arise the reduced tuned vector

1, =[1,.1,,...1, ] . Often we require change of natural frequencies. In such case we speak

rl»
about spectral tuning. If modal vectors are to be changed we speak about modal tuning.
The vector of required tuning values is signed I’ which is of order k. To reach this vector we
change only some elements of the tuning vector. So arise the reduced vector of tuning

parameters p;, which is defined by the selecting vector of tuning parameters
i=[i,0d, |
with s elements. In next we omit the word reduced as well the index » by both vectors —

tuning and tuned. The required tuned values depend on tuning parameters 1 = I(p).
5.1 The method of successive linear approximations

The tuning is mathematical formulate as finding the vector p’ so that

I(p)=I (5.1.1)
The tuning process do not change the tuning parameters, which are not involved into the
reduced vector of tuning parameters p,. However, the tuned parameters that may not be
changed must be involved in the tuned vector 1.
If the vector of tuned parameters I(p) is defined in the surroundings of outgoing point pj it is

possible every function li(p) expand into the Taylor series
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z(p)—l(0>+z 0®) (), oy L ZZ“("‘J) —pO)p, — P+

a 2
" o (5.12)
Sp Sp (91([)0) 0) 0) 0)
P . — D = pNp, — ") +...
Z;Zap,,a op, P~ PPy =B P

We will take into account the linear restitution (we use only two first terms of (5.1.2). We

introduce the gradient vector of the function /;(py):

T
0h(p)  I(p,)
Ip, 9p

grad [(p,) :l (5.1.3)

By using (5.1.3) in (5.1.2) we may write
L(p)=1L(p,)+grad'l(p,)(p—p,) fori=12,..k (5.1.4)

We use the Jacobi matrix of notation, which is also called the tuning matrix

rad’l
g :1(p0) _ M

L(p,) = op
J

fori=1,2,...,k j=12,...,8

g’"adle (P,)

The notation of (5.1.4) is possible to simplify
1(p) =1(p,) + L(p, —P,) (5.1.5)

The tuning matrix is generally rectangular (k,s). Its elements in i — row and j — column
express the rate of change tuned value on the change of tuning parametr, therefore it is
possible to cal it the sensitivity matrix.If the tuning matrix is regular and for its majority is
valid

KL(p,) = min(k, s)
Then exists for k£ > s the left hand side inverse matrix
-1

L' (po) = (L (po)L(py)) L' (py)

For k <s exists right hand side inverse matrix
-1

L"(p,) =L’ (p,)(L(po)L (p,))

By using of these equations it is possible determine from (5.1.5)
p=p, + L (p) (1) —1(p,)) (5.1.6)

L" is right hand side or left hand side matrix.
If we want solve (5.1.1) we get by using (5.1.5) and (5.1.6)

p=p,+L (p,) (I~ 1(p,)) (5.1.7)

This expression is loaded by an error, because
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1. The linear consideration (5.1.5) is by non-linear systems approximate
2. Ifr> s the solution (5.1.6) is only the best approximation

To diminish the error we consider (5.1.7) as iteration and we use the expression
P =P, AL (@)(I'=1(p)) fori=12,... (5.1.8)

From the initial value po we determine the first member of the series p; and successively the
next terms. If the series converge we sign the limit p as the result. The basic requirement of
solution (5.1.1) is to obtain the best values of tuned values. The tuning process is finished if
the following condition is fulfilled

~ | L)
> g ll e

J=1 i

2

<e (5.1.9)

g1 is chosen small positive number, which define the allowed error of tuned values. g; are

positive weight coefficients , that allowed to prefer some of tuned parameters. (5.1.9) used
relative errors. The square values are used because it does not depend on the sign of the
difference. By accurate solution would be the left hand side of equation (5.1.9) equal to zero.

In all other cases is positive.

In some cases the exact solution does not exist. For very small values of ; (5.1.9) will be

never fulfilled, and even it can coverage. Therefore we introduce other criterion to stop the

calculation

<e, (5.1.10)

g, 1s again relative error of tuned parameters. If the process does not converge it is necessary

to stop the calculation after a fix given number £ of iteration steps.

5.2 Dynamic sensitivity

The aim of sensitivity analysis is to obtain quantitative information about the sensitivity of
structural natural frequencies and natural and natural modes to variations of tuning parameters
such as spring stiffness, elasticity coefficients of materials, concentrated masses, distribute
masses, cross section area etc. Dynamic sensitivity is defined as the ratio of natural

frequencies or natural vectors to the unit change of tuning parameters.
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The sensitivity analysis is becoming more valuable in dynamic structural systems for several
purposes:
- to get a better knowledge of the sensitivity of a structure to slight modifications
- to obtain derivatives for the dynamic optimization and tuning of a structure by
mathematical programming methods
- to obtain derivatives for the updating of a dynamic model which aims to match
numerical and experimental results

To derive dynamic sensitivity and also the coefficients of tuning matrix given by (5.1.4)

o\ v,
it is necessary to derive 8_ and —% 5 .Hereis \ = Ql , Vi 18 k — element of 1 — natural vector,
P p]-

pj 1s a tuning parameter. As was derived the free non-damped system is described by the
equation
K-AM)v, =0 (5.2.1)

Or in the form

Kv, =AMy, (5.2.2)
We suppose the normalization of the vector v/ Mv, = 1 and multiply (5.2.2) by v/ from left
hand side we obtain a simple form

viKv, =) (5.2.3)
The derivative of (5.2.2) over p; we get

Oy kD )M

ap] dp;, Op,; Ip; Op;
After multiplying of this equation by v! from left hand side and using the previous

normalization we obtain

O _ 1| 0K )\ M v (k- am) D (5.2.4)
Ip, Ip, Ip; 9p;
After transposition of (5.2.1) is
v (K-A\M)=0"
When we apply this equation on (5.2.4) we get
ON _ a—K—A,.a—M v, fori=1.2,..,nandj=12,....s (5.2.5)
Ip; Op; Op,

(5.2.5) represents the sensibility of eigenvalue \; to the change of tuning parameter p;.
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: ov, . : o
For next solution we suppose that —*= is a linear combination of natural vectors
j

_E:“>. (5.2.6)

After substituting (5.2.6) into (5.2.4) we obtain after arrangement the equation for non-
diagonal elements:

r| 0K

"\op, A a K +Za‘”VT<K—AkM)vz =0 (5.2.7)

With respect to (5.2.3) we may write
viIMv, =68, VIKv,=\§, (5.2.8)
The Kronecker coefficient has the values

o, =1 pro i=I
0,=0 pro i=l

Now we can write (5.2.7) in the form

v, +al’(\—\)=0

0K oM
)\k
op, op,

J

v, (5.2.9.)

If some of eigenvalue are equal we will work as shown in next process

We make derivative of the expression for normalization

T
8’M LV 8—MV+ TMa—Vzo

Op; op; Op;

Each summand in this equation is scalar. The first summand is obtained by transposition of
the last one and we can write

ZVTMa—V:— 8M

Op; 8p ;
When we substitute in this equation (5.2.6) , then
1 r 8M

a, =——vV , 5.2.10
ii 7 ap \f ( )

J
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Substituting the coefficient given by (5.2.9) and (5.2.10) in (5.2.6) we obtain the expression
for determination of the sensitivity natural vectors:
ov, _ i 1 v
apj i=l1 )‘k - )\,-

="k

0K |\ oM
dp, ' Op,

J

V,V, —Evka—vkvk (5.2.11)

5.2.1 The tuning process

The starting state is the designed mechanical model with given mass, stiffness and
geometrical parameters. In such case the mass matrix M and stiffness matrix K are known.
Then we must know which elements of the tuned vector will change what values they have to

reach. The tuning process is possible to describe by following algorithm:

1. We determine the natural frequencies €2;, and natural vectors v; of the designed model.

We provide the normalization over the mass matrix M.

2. With respect of tuned requirements we determine the selecting vector of tuned

k . .
parameters i = [i f] ~and so will be determined the tuned vector 1.
v

3. We make the sensitivity analysis of the designed model. By this way the starting
values of tuning matrix L are given. This matrix is a column matrix of order s, which
involves all structure parameters, which may be changed.

s
i=

4. We determine the selecting vector of tuning parameters j= [ j,.] .+ So the tuning

vector p is given. The number of tuning parameters we preferably choose equal to the

number of requirements . In such case L' = L' and the solution is exact. The
selection of tuning parameters is made with respect of the results of the sensitivity
analysis. The sensitivity determines the absolute values of the tuning matrix and the

tuning parameters correspond to the columns of this matrix. The measure of sensitivity

of tuning parameters is the sum of absolute values of the column matrix L= [lij] for

1=1.2,....k j=1,2,...,s. Whereby the sum

k
c; = Z‘IU‘] is greater so the sensitivity is
i=1

greater.

5. We choose the relative errors of tuned parameters €; and tuning parameters €,, the

greatest number of iterations ko, eventually the weight coefficients of tuned values. By

using of simple arithmetic we do not choose relative errors greater then 10, In the
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case s > k we choose & > & approximately of two orders. The number £ is not
necessary be greater then 10.

6. We decide about using of admissible region and of the possibility of a shortening of

the step ||Ap|| . Using of admissible region is necessary from the physical point of view

(tuning parameters can not be negative). With respect to this we determine the lower
and upper bar. If the upper bar may grow to infinity we choose it of some order
greater then the starting value.

7. We start the own tuning of the system according the equation (5.1.8)

8. We check the results of tuning process and its compilation. If the process divergates
we choose smaller value of the step and we repeat the calculation.

9. We calculate natural frequencies and modal vectors of the mechanical system with

new parameters. We compare the results with given requirements.
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